[1] WANG S, LAI G, LIN J, et al. Rapid detection of adulteration in extra virgin olive oil by low-field nuclear magnetic resonance combined with pattern recognition[J]. Food Analytical Methods, 2021, 14(7): 1322-1355.DOI:10.11895/j.issn.0253-3820.140902. [2] NU 'ÑEZ N, SAURINA J, NU 'ÑEZ O. Non-targeted HPLC-FLD fingerprinting for the detection and quantitation of adulterated coffee samples by chemometrics[J]. Food Control, 2021, 124: 107912.DOI: 10.1016/j.foodcont.2021.107912. [3] ALI H, RAFIQUE K, ULLAH R, et al. Classification of Sidr honey and detection of sugar adulteration using right angle fluorescence spectroscopy and chemometrics[J]. European Food Research and Technology, 2022, 248(7): 1823-1829.DOI: 10.1007/S00217-022-04008-9. [4] 陈燕,张笑,邱思慧,等.茶油掺伪检测技术研究进展[J].中国粮油学报, 2023, 38(4): 159-169.DOI: 10.20048/j.cnki.issn.1003-0174.000291. [5] 侯颖烨,王志元,谢建军,等.元素分析-稳定同位素质谱法结合化学计量学鉴别橄榄油掺假[J].中国油脂, 2023, 48(6): 73-78.DOI: 10.19902/j.cnki.zgyz.1003.7969.220232. [6] 李艳坤,许东情.基于中红外光谱模型对食用植物油掺伪的判别[J].河北大学学报(自然科学版), 2022, 42(6): 605-610.DOI: 10.3969/j.issn.1000-1565.2022.06.007. [7] 庞佳烽,汤谌,李艳坤,等. 中红外光谱联合模式识别鉴别奶粉中三聚氰胺[J].光谱学与光谱分析, 2020, 40(10): 3235-3240.DOI:10.3964/j.issn.1000-0593(2020)10-3235-06. [8] COMON P. Independent component analysis, A new concept[J]. Signal Processing, 1994, 36(3): 287-314.DOI: 10.1016/0165-1684(94)90029-9. [9] MONAKHOVA Y B, RUTLEDGE D N. Independent components analysis(ICA)at the “cocktail-party” in analytical chemistry[J]. Talanta, 2020, 208(1): 120451.DOI: 10.1016/j.talanta.2019.120451. [10] 黄秀,康嘉诚,王淇,等.基于盲源分离的有机物混合信号特征提取与解析[J].计量学报, 2023, 44(4): 645-652.DOI: 10.3969/j.issn.1000-1158.2023.04.23. [11] CARDOSO J F. High-order contrasts for independent component analysis[J]. Neural computation, 1999, 11(1): 157-192.DOI: 10.1162/089976699300016863. [12] LIU F, HUANG H, LIU Y, et al. Performance degradation assessment for coaxial bearings using kernel JADE and two-class model[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12.DOI: 10.1109/tim.2020.3014033. [13] CORTES C, VAPNIK V. Support-Vector Networks [J]. Machine Learning, 1995, 20(3): 273-297.DOI: 10.1007/bf00994018. [14] 闪霁芳,刘琨,江俊峰,等.支持向量机在混合气体定量分析中的应用[J].光学学报, 2023, 43(12): 81-91.DOI: 10.3788/AOS221681. [15] MOHAMMADI M, RASHID T A, KARIM S H T, et al. A comprehensive survey and taxonomy of the SVM-based intrusion detection systems[J]. Journal of Network and Computer Applications, 2021, 178: 102983. DOI: 10.1016/j.jnca.2021.102983. [16] 冯瑞杰,陈争光,衣淑娟.基于贝叶斯优化的SVM玉米品种鉴别研究[J].光谱学与光谱分析, 2022, 42(6): 1698-1703.DOI: 10.3964/j.issn.1000-0593(2022)06-1698-06. [17] WANG X, JIN Y, SCHMITT S, et al. Recent advances in Bayesian optimization[J]. ACM Computing Surveys, 2023, 55(13s): 1-36.DOI: 10.1145/3582078. [18] 孙嘉豪,张伟,施鉴芩,等.光谱数据预处理策略选择及应用 [J].计量学报, 2023, 44(8): 11284-1292.DOI: 10.3969/j.issn.1000-1158.2003.08.20. [19] CHERKASSKY V, MA Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural networks, 2004, 17(1): 113-126.DOI: 10.1016/s0893-6080(03)00169-2. ( |