[1] LI X S, LI F J, ZHENG S J, et al. NOx concentration prediction with a flexible cascaded echo-state network in a cement clinker calcination system[J]. IEEE Trans Ind Inform, 2024, 20(7): 9644-9654. DOI: 10.1109/TII.2024.3386973. [2] QIAO J F, ZHOU J L, MENG X. A multitask learning model for the prediction of NOx emissions in municipal solid waste incineration processes[J]. IEEE Trans Instrum Meas, 1809, 72: 2502214. DOI: 10.1109/TIM.2022.3225056. [3] 闫来清.SCR烟气脱硝系统数据驱动建模与优化控制研究[D].北京:华北电力大学, 2020. [4] 王珑宪,赵文杰.基于变量选择的电站燃煤锅炉NOx排放浓度预估[J].计量学报, 2023, 44(10): 1590-1596. DOI: 10.3969/j.issn.1000-1158.2023.10.15. [5] HU B, LIU C, YANG Y, et al. Adaptive internal model control of SCR denitration system based on multi-objective optimization[J]. IEEE Access, 2022, 10: 24769-24785. DOI: 10.1109/ACCESS.2022.3154418. [6] TANG Z H, WANG S K, CHAI X Y, et al. Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction[J]. Energy, 2022, 256: 124552. DOI: 10.1016/j.energy.2022.124552. [7] 杨国田,刘凯,王英男.基于门控循环单元神经网络的NOx排放量预测[J].控制工程, 2022, 29(7): 1204-1209. DOI: 10.14107/j.cnki.kzgc.20200017. [8] HAN Z Z, XIE Y, HOSSAIN M M, et al. A hybrid deep neural network model for NOx emission prediction of heavy oil-fired boiler flames[J]. Fuel, 2023, 333: 126419. DOI: 10.1016/j.fuel.2022.126419. [9] PHILIP CHEN C L, LIU Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Trans Neural Netw Learn Syst, 2018, 29(1): 10-24. DOI: 10.1109/TNNLS.2017.2716952. [10] 杜康萍,隋璘,熊伟丽.基于自适应稀疏宽度学习系统的软测量建模[J].系统仿真学报, 2024, 17(8): 131-143. DOI: 10.16182/j.issn1004731x.joss.24-0096. [11] 李苗苗,王秋萍,惠蕙.分数阶策略和带有Lévy飞行的螺旋蝙蝠算法[J].计算机工程与应用, 2021, 57(18): 75-81. DOI: 10.3778/j.issn.1002-8331.2008-0164. [12] LU Y, SUN Y, LIU X D, et al. Control allocation for a class of morphing aircraft with integer constraints based on Lévy flight[J]. J Syst Eng Electron, 2020, 31(4): 826-840. DOI: 10.23919/JSEE.2020.000056. [13] FERRARI D, CARRETTA S, AMORETTI M. A modular quantum compilation framework for distributed quantum computing[J]. IEEE Trans Quantum Eng, 2023, 4: 2500213. DOI: 10.1109/TQE.2023.3303935. [14] 孙俊.量子行为粒子群优化算法研究[D].无锡:江南大学, 2009. [15] WU X L, YU X D, XU R, et al. Nonlinear dynamic soft-sensing modeling of NOx emission of a selective catalytic reduction denitration system[J]. IEEE Trans Instrum Meas, 2022, 71: 2504911. DOI: 10.1109/TIM.2022.3141154. [16] 吴家标,刘兴高.基于集成学习的CFB锅炉氮氧化物排放质量浓度在线建模研究[J].热力发电, 2021, 53(12): 86-92. DOI: 10.19666/j.rlfd.202404086. [17] HUANG D, WANG C D, WU J S, et al. Ultra-scalable spectral clustering and ensemble clustering[J]. IEEE Trans Knowl Data Eng, 2020, 32(6): 1212-1226. DOI: 10.1109/TKDE.2019.2903410. [18] DONG Z, JIANG W, SUN M, et al. Soft sensing of NOx emissions from thermal power units based on adaptive GMM two-step clustering algorithm and ensemble learning[J]. IEEE Trans Instrum Meas, 2023, 72: 2515719. DOI: 10.1109/TIM.2023.3279913. [19] SHI Z Y, HUANG K, HONG S Z, et al. Estimating the lag time between flight arrivals and parking exit volumes at a major airport: a practical approach[J]. IEEE Access, 2024, 12: 63351-63360. DOI: 10.1109/ACCESS.2024.3396062. ( |