[1] LI X C, ZHANG P P, BAO W T, et al. Two modes of a plasma jet excited by a direct current voltage[J]. Plasma Sources Science and Technology, 2016, 25(2): 025022. DOI:10.1088/0963-0252/25/2/025022. [2] LI X C, BAO W T, CHU J D, et al. A uniform laminar air plasma plume with large volume excited by an alternating current voltage[J]. Plasma Sources Science and Technology, 2015, 24(6): 065020. DOI:10.1088/0963-0252/24/6/065020. [3] LI X C, CHU J D, ZHANG Q, et al. Performance of a large-scale barrier discharge plume improved by an upstream auxiliary barrier discharge[J]. Applied Physics Letters, 2016, 109(20): 204102. DOI:10.1063/1.4966558. [4] ZHENG P C, LIU K M, WANG J M, et al. Surface modification of polyimide(PI)film using water cathode atmospheric pressure glow discharge plasma[J]. Applied Surface Science, 2012, 259: 494-500. DOI:10.1016/j.apsusc.2012.07.073. [5] MACHALA Z, TARABOVA B, HENSEL K, et al. Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects[J]. Plasma Processes and Polymers, 2013, 10(7): 649-659. DOI:10.1002/ppap.201200113. [6] MASSINES F, GHERARDI N, NAUDÉ N, et al. Glow and Townsend dielectric barrier discharge in various atmosphere[J]. Plasma Physics and Controlled Fusion, 2005, 47(12B): B577-B588. DOI:10.1088/0741-3335/47/12b/s42. [7] GUBKIN J. Electrolytische Metallabscheidung an der freien Oberfläche einer Salzläsung[J]. Annalen Der Physik Und Chemie, 1887, 268(9): 114-115. DOI:10.1002/andp.18872680909. [8] LI X C, ZHAO H H, JIA P Y. Characteristics of a normal glow discharge excited by DC voltage in atmospheric pressure air[J]. Plasma Science and Technology, 2013, 15(11): 1149-1153. DOI:10.1088/1009-0630/15/11/13. [9] LI X C, ZHANG P P, JIA P Y, et al. Generation of a planar direct-current glow discharge in atmospheric pressure air using rod array electrode[J]. Scientific Reports, 2017, 7: 2672. DOI:10.1038/s41598-017-03007-1. [10] LU X P, LAROUSSI M. Ignition phase and steady-state structures of a non-thermal air plasma[J]. Journal of Physics D: Applied Physics, 2003, 36(6): 661-665. DOI:10.1088/0022-3727/36/6/308. [11] BRUGGEMAN P, RIBEŽL E, MASLANI A, et al. Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode[J]. Plasma Sources Science and Technology, 2008, 17(2): 025012. DOI:10.1088/0963-0252/17/2/025012. [12] LIU J D, HE B B, CHEN Q, et al. Direct synthesis of hydrogen peroxide from plasma-water interactions[J]. Scientific Reports, 2016, 6: 38454. DOI:10.1038/srep38454. [13] MAXIMOV A I, KHLUSTOVA A V. Optical emission from plasma discharge in electrochemical systems applied for modification of material surfaces[J]. Surface and Coatings Technology, 2007, 201(21): 8782-8788. DOI:10.1016/j.surfcoat.2007.02.042. [14] SHIRAI N, ICHINOSE K, UCHIDA S, et al. Influence of liquid temperature on the characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow[J]. Plasma Sources Science and Technology, 2011, 20(3): 034013. DOI:10.1088/0963-0252/20/3/034013. [15] LI X C, LI X N, GAO K, et al. Comparison of deionized and tap water activated with an atmospheric pressure glow discharge[J]. Physics of Plasmas, 2019, 26(3): 033507. DOI:10.1063/1.5080184. [16] DU Y J, NAYAK G, OINUMA G, et al. Effect of water vapor on plasma morphology, OH and H2O2 production in He and Ar atmospheric pressure dielectric barrier discharges[J]. Journal of Physics D: Applied Physics, 2017, 50(14): 145201. DOI:10.1088/1361-6463/aa5e7d. |