Journal of Hebei University(Natural Science Edition) ›› 2021, Vol. 41 ›› Issue (4): 349-361.DOI: 10.3969/j.issn.1000-1565.2021.04.003
Previous Articles Next Articles
WANG Qing,LIU Ziyang,ZHAO Shasha,LI Zhiliang
Received:
2021-04-20
Published:
2021-09-03
CLC Number:
WANG Qing,LIU Ziyang,ZHAO Shasha,LI Zhiliang. Research progress of electrical transport properties of Bi2Te3-based thermoelectric materials[J]. Journal of Hebei University(Natural Science Edition), 2021, 41(4): 349-361.
Add to citation manager EndNote|Ris|BibTeX
URL: //xbzrb.hbu.edu.cn/EN/10.3969/j.issn.1000-1565.2021.04.003
[1] HOCHBAUM A I, YANG P D. Semiconductor nanowires for energy conversion[J]. Chemical Reviews, 2010, 110(1): 527-546.DOI:10.1021/cr900075v. [2] SALES B C. Smaller is cooler(Perspectives: thermoelectric materials)[J]. Science, 2002, 295(5558): 1248-1250. [3] GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews, 2013, 42(7): 2986-3017.DOI:10.1039/c2cs35310e. [4] YANG J, XI L L, QIU W J, et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective[J]. Npj Computational Materials, 2016, 2(1): 1-17.DOI:10.1038/npjcompumats.2015.15. [5] PEI Y Z, WANG H, SNYDER G J. Band engineering of thermoelectric materials[J]. Advanced Materials, 2012, 24(46): 6125-6135.DOI:10.1002/adma.201202919. [6] IOFFE A F,GELBTUCH A. Semiconductor thermoelements and thermoelectric cooling[M]. London: Infosearch, 1957.DOI:10.1063/1.3060810. [7] GREENAWAY D L, HARBEKE G. Band structure of bismuth telluride, bismuth selenide and their respective alloys[J]. Journal of Physics and Chemistry of Solids, 1965, 26(10): 1585-1604.DOI: 10.1016/0022-3697(65)90092-2. [8] SATTERTHWAITE C B, URE JR R W. Electrical and thermal properties of Bi2Te3[J]. Physical Review, 1957, 108(5): 1164.DOI:10.1103/physrev.108.1164. [9] IOFFE A F. Two new applications of the Peltier effect[J]. Zhur Tekh Fiz, 1956, 26: 478. [10] 牛厂磊,唐显,李鑫.碲化铋热电材料研究进展评述[J].中国陶瓷,2019,55(1):1-4.DOI:10.10.16521/j.cnki.issn.1001-9642.2019.01.001. [11] KHAN S, CHOUHAN M. Review of bismuth telluride(Bi2Te3)nanostructure, characterization and properties[J]. International Journal of Emerging Technology in Computer Science & Electronics, 2016, 21: 235-238. [12] TESTARDI L R, STILES P J, BURSTEIN E. De Haas-van Alphen and high field galvanomagnetic studies of the Bi2Te3 valence band structure[J]. Solid State Communications, 1963, 1(2): 28-34.DOI:10.1016/0038-1098(63)90387-9. [13] MALLINSON R B, RAYNE J A, URE JR R W. De Haas-van Alphen effect in n-type Bi2Te3[J]. Physical Review, 1968, 175(3): 1049.DOI:10.1103/physrev.175.1049. [14] KÖHLER H. Non-parabolic e(k)relation of the lowest conduction band in Bi2Te3[J]. Physica Status Solidi(B), 1976, 73(1): 95-104.DOI:10.1002/pssb.2220730107. [15] THOMAS G A, RAPKINE D H, V DOVER R B, et al. Large electronic-density increase on cooling a layered metal: Doped Bi2Te3[J]. Physical Review B, 1992, 46(3): 1553.DOI:10.1103/PhysRevB.46.1553. [16] MATTHEISS L F, HAMANN D R. Linear augmented-plane-wave calculation of the structural properties of bulk Cr, Mo, and W[J]. Physical Review B, 1986, 33(2): 823.DOI:10.1103/PhysRevB.33.823. [17] HERMAN F, SKILLMAN S. Atomic structure calculations[J].Journal of the Electrochemical Society,1963,111(3):1217-1338.DOI:10.1149/1.2426131. [18] MISHRA S K, SATPATHY S, JEPSEN O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide[J]. Journal of Physics: Condensed Matter, 1997, 9(2): 461.DOI:10.1088/0953-8984/9/2/014. [19] ANDERSEN O K. Linear methods in band theory[J]. Physical Review B, 1975, 12(8): 3060.DOI:10.1103/PhysRevB.12.3060. [20] KÖHLER H. Non-parabolicity of the highest valence band of Bi2Te3 from Shubnikov-de Haas effect[J]. Physica Status Solidi(B), 1976, 74(2): 591-600.DOI:10.1002/pssb.2220740218. [21] LARSON P, MAHANTI S D, KANATZIDIS M G. Electronic structure and transport of Bi2Te3 and BaBiTe3[J]. Physical Review B, 2000, 61(12): 8162.DOI:10.1103/PhysRevB.61.8162. [22] WIMMER E, KRAKAUER H, WEINERT M, et al. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule[J]. Physical Review B, 1981, 24(2): 864.DOI: 10.1103/PhysRevB.24.864. [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.DOI:10.1103/PhysRevLett.77.3865. [24] YOUN S J, FREEMAN A J. First-principles electronic structure and its relation to thermoelectric properties of Bi2Te3[J]. Physical Review B, 2001, 63(8): 085112.DOI:10.1103/physrevb.63.085112. [25] LARSON P. Effect of p</sub>1/2 corrections in the electronic structure of Bi2Te3 compounds[J]. Physical Review B, 2003, 68(15): 155121.DOI:10.1103/PhysRevB.68.155121. [26] SINGH D. Ground-state properties of lanthanum: Treatment of extended-core states[J]. Physical Review B, 1991, 43(8): 6388.DOI:10.1103/PhysRevB.43.6388. [27] SCHEIDEMANTEL T J, AMBROSCH-DRAXL C, THONHAUSER T, et al. Transport coefficients from first-principles calculations[J]. Physical Review B, 2003, 68(12): 125210.DOI:10.1103/PhysRevB.68.125210. [28] HUANG B L, KAVIANY M. Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride[J]. Physical Review B, 2008, 77(12): 125209.DOI:10.1103/PhysRevB.77.125209. [29] LI C Y, RUOFF A L, SPENCER C W. Effect of pressure on the energy gap of Bi2Te3[J]. Journal of Applied Physics, 1961, 32(9): 1733-1735.DOI:10.1063/1.1728426. [30] LARSON P, GREANYA V A, TONJES W C, et al. Electronic structure of Bi2X3(X= S, Se, T)compounds: Comparison of theoretical calculations with photoemission studies[J]. Physical Review B, 2002, 65(8): 085108.DOI:10.1103/physrevb.65.085108. [31] WANG G, CAGIN T. Investigation of effective mass of carriers in Bi2Te3/Sb2Te3 superlattices via electronic structure studies on its component crystals[J]. Applied Physics Letters, 2006, 89(15): 152101.DOI:10.1063/1.2360191. [32] YAVORSKY B Y, HINSCHE N F, MERTIG I, et al. Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3[J]. Physical Review B, 2011, 84(16): 165208.DOI: 10.1103/PhysRevB.84.165208. [33] CHEN X, PARKER D, SINGH D J. Acoustic impedance and interface phonon scattering in Bi2Te3 and other semiconducting materials[J]. Physical Review B, 2013, 87(4): 045317.DOI: 10.1103/PhysRevB.87.045317. [34] 管建祥,陈磊,朱士泽,等.第一性原理研究Bi2Te3材料及在应变作用下的电子结构变化[J].重庆师范大学学报(自然科学版), 2016, 33(05): 133-137. [35] 赵堃.压力下Bi2Te3和Sb2Te3中电子拓扑转变的第一性原理研究[D]. 哈尔滨:哈尔滨工业大学, 2016.DOI: 10.7666/d.D01332314. [36] ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.DOI: 10.1038/nphys1270. [37] ZHANG W, YU R, ZHANG H J, et al. First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3[J]. New Journal of Physics, 2010, 12(6): 065013.DOI: 10.1088/1367-2630/12/6/065013. [38] YAZYEV O V, MOORE J E, LOUIE S G. Spin polarization and transport of surface states in the topological insulators Bi2Se3 and Bi2Te3 from first principles[J]. Physical Review Letters, 2010, 105(26): 266806.DOI: 10.1103/PhysRevLett.105.266806. [39] YAZYEV O V, KIOUPAKIS E, MOORE J E, et al. Quasiparticle effects in the bulk and surface-state bands of Bi2Se3 and Bi2Te3 topological insulators[J]. Physical Review B, 2012, 85(16): 161101.DOI: 10.1103/PhysRevB.85.161101. [40] AGUILERA I, FRIEDRICH C, BIHLMAYER G, et al. GW study of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3: Beyond the perturbative one-shot approach[J]. Physical Review B, 2013, 88(4): 045206.DOI: 10.1103/PhysRevB.88.045206. [41] AGUILERA I, FRIEDRICH C, BLÜGEL S. Spin-orbit coupling in quasiparticle studies of topological insulators[J]. Physical Review B, 2013, 88(16): 165136.DOI: 10.1103/PhysRevB.88.165136. [42] KIM M, FREEMAN A J, GELLER C B. Screened exchange LDA determination of the ground and excited state properties of thermoelectrics: Bi2Te3[J]. Physical Review B, 2005, 72(3): 035205.DOI: 10.1103/PhysRevB.72.035205. [43] BYLANDER D M, KLEINMAN L. Good semiconductor band gaps with a modified local-density approximation[J]. Physical Review B, 1990, 41(11): 7868.DOI: 10.1103/PhysRevB.41.7868. [44] YE L H, HOANG K, FREEMAN A J, et al. First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe2[J]. Physical Review B, 2008, 77(24): 245203.DOI: 10.1103/physrevb.77.245203. [45] SHEPARD S, SMEU M. Ab initio study of structural and electronic properties of copper and nickel tungstate[J]. Computational Materials Science, 2018, 143: 301-307.DOI:10.1016/j.commatsci.2017.11.021. [46] SHISHKIN M, KRESSE G. Self-consistent GW calculations for semiconductors and insulators[J]. Physical Review B, 2007, 75(23): 1-9.DOI:10.1103/PhysRevB.75.235102. [47] VON BARTH U, HOLM B. Self-consistent GW0 results for the electron gas: Fixed screened potential W0 within the random-phase approximation[J]. Physical Review B, 1996, 54(12): 8411-8419.DOI: 10.1103/PhysRevB.54.8411. [48] CAO H W, YU Z Y, LU P F, et al. Fully converged plane-wave-based self-consistent GW calculations of periodic solids[J]. Physical Review B, 2017, 95(3): 1-15.DOI: 10.1103/PhysRevB.95.035139. [49] KIOUPAKIS E, TIAGO M L, LOUIE S G. Quasiparticle electronic structure of bismuth telluride in the GW approximation[J]. Physical Review B, 2010, 82(24): 245203.DOI: 10.1103/PhysRevB.82.245203. [50] NECHAEV I A, CHULKOV E V. Quasiparticle band gap in the topological insulator Bi2Te3[J]. Physical Review B, 2013, 88(16): 165135.DOI: 10.1103/PhysRevB.88.165135. [51] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178-181.DOI: 10.1126/science.1173034. [52] TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential[J]. Physical Review Letters, 2009, 102(22): 226401.DOI: 10.1103/PhysRevLett.102.226401. [53] PARKER D S, MAY A F, SINGH D J. Benefits of carrier-pocket anisotropy to thermoelectric performance: The case of p-type AgBiSe2[J]. Physical Review Applied, 2015, 3(6): 064003.DOI: 10.1103/PhysRevApplied.3.064003. [54] HEREMANS J P, WIENDLOCHA B. Tetradymites: Bi2Te3 related materials[M] //UHER C.Materials Aspect of Thermoelectricity.Boca Raton: CRC Press, 2016:39-94. [55] YIM W M, FITZKE E V, ROSI F D. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300°K[J]. Journal of Materials Science, 1966, 1(1): 52-65.DOI: 10.1007/BF00549720. [56] PAN Y, QIU Y, WITTING I, et al. Synergistic modulation of mobility and thermal conductivity in(Bi,Sb)2Te3 towards high thermoelectric performance[J]. Energy & Environmental Science, 2019, 12(2): 624-630.DOI: 10.1039/C8EE03225D. [57] WANG S Y, TAN G J, XIE W J, et al. Enhanced thermoelectric properties of Bi2(Te1-xSex)3-based compounds as n-type legs for low-temperature power generation[J]. Journal of Materials Chemistry, 2012, 22(39): 20943-20951.DOI: 10.1039/C2JM34608G. [58] KIM D H, KIM C, HEO S H, et al. Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi-Te-based thermoelectric materials[J]. Acta Materialia, 2011, 59(1): 405-411.DOI: 10.1016/j.actamat.2010.09.054. [59] JACQUOT A, BAYER B, WINKLER M, et al. Coupled theoretical interpretation and experimental investigation of the anisotropy of the lattice thermal conductivity of Bi2Te3 single crystal[J]. Journal of Solid State Chemistry, 2012, 193: 105-108.DOI: 10.1016/j.jssc.2012.03.060. [60] HUANG B L, LAWRENCE C, GROSS A, et al. Low-temperature characterization and micropatterning of coevaporated Bi2Te3 and Sb2Te3 films[J]. Journal of Applied Physics, 2008, 104(11): 113710.DOI: 10.1063/1.3033381. [61] JAWORSKI C M, KULBACHINSKII V, HEREMANS J P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power[J]. Physical Review B, 2009, 80(23): 233201.DOI: 10.1103/PhysRevB.80.233201. [62] LOŠT’ÁK P, DRAŠAR Cˇ, BACHAN D, et al. Defects in Bi2Te3-xSex single crystals[J]. Radiation Effects & Defects in Solids, 2010, 165(3): 211-215.DOI: 10.1080/10420151003616663. [63] PARKER D, SINGH D J. Potential thermoelectric performance from optimization of hole-doped Bi2Se3[J]. Physical Review X, 2011, 1(2): 021005.DOI: 10.1103/PhysRevX.1.021005. [64] LUO X, SULLIVAN M B, QUEK S Y. First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions[J]. Physical Review B, 2012, 86(18): 184111.DOI: 10.1103/PhysRevB.86.184111. [65] KÖHLER H, FABBICIUS A. Galvanomagnetic properties of Bi2Se3 with free carrier densities below 5×1017 cm-3[J]. Physica Status Solidi(B), 1975, 71(2): 487-496.DOI: 10.1002/pssb.2220710209. [66] GREANYA V A, TONJES W C, LIU R, et al. Determination of the valence band dispersions for Bi2Se3 using angle resolved photoemission[J]. Journal of Applied Physics, 2002, 92(11): 6658-6661.DOI: 10.1063/1.1517748. [67] KIM S, YE M, KURODA K, et al. Surface scattering via bulk continuum states in the 3D topological insulator Bi2Se3[J]. Physical Review Letters, 2011, 107(5): 056803.DOI: 10.1103/PhysRevLett.107.056803. [68] NECHAEV I A, HATCH R C, BIANCHI M, et al. Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment[J]. Physical Review B, 2013, 87(12): 121111.DOI: 10.1103/PhysRevB.87.121111. [69] CHEN Y L, CHU J H, ANALYTIS J G, et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator[J]. Science, 2010, 329(5992): 659-662.DOI: 10.1126/science.1189924. [70] MOOSER E, PEARSON W B. New semiconducting compounds[J]. Physical Review, 1956, 101(1): 492.DOI: 10.1103/PhysRev.101.492. [71] BLACK J, CONWELL E M, SEIGLE L, et al. Electrical and optical properties of some MV-B2NVI-B3 semiconductors[J]. Journal of Physics and Chemistry of Solids, 1957, 2(3): 240-251.DOI: 10.1016/0022-3697(57)90090-2. [72] GIBBS Z M, LALONDE A, SNYDER G J. Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy[J]. New Journal of Physics, 2013, 15(7): 075020.DOI: 10.1088/1367-2630/15/7/075020. [73] HOR Y S, RICHARDELLA A, ROUSHAN P, et al. P-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications[J]. Physical Review B, 2009, 79(19): 195208.DOI: 10.1103/PhysRevB.79.195208. [74] MARTINEZ G, PIOT B A, HAKL M, et al. Determination of the energy band gap of Bi2Se3[J]. Scientific Reports, 2017, 7(1): 1-5.DOI: 10.1038/s41598-017-07211-x. [75] FANG T, LI X, HU C L, et al. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions[J]. Advanced Functional Materials, 2019, 29(28): 1900677.DOI: 10.1002/adfm.201900677. [76] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Materials for Sustainable Energy, 2011: 101-110.DOI: 10.1038/nmat2090. [77] YIM W M, ROSI F D. Compound tellurides and their alloys for peltier cooling-A review[J]. Solid-State Electronics, 1972, 15(10): 1121-1140.DOI:10.1016/0038-1101(72)90172-4. [78] SCHERRER H, SCHERRER S, ROWE D M. CRC handbook of thermoelectrics[M]. Boca Raton: CRC Press LLC, 1995: 211-238. [79] SCHWARTZ H, BJÖRCK G, BECKMAN O. De Haas-van Alphen susceptibility measurements on p-type Sb2Te3[J]. Solid State Communications, 1967, 5(11): 905-907.DOI: 10.1016/0038-1098(67)90326-2. [80] VON MIDDENDORFF A, DIETRICH K, LANDWEHR G. Shubnikov-de Haas effect in p-type Sb2Te3[J]. Solid State Communications, 1973, 13(4): 443-446.DOI: 10.1016/0038-1098(73)90472-9. [81] POLVANI D A, MENG J F, CHANDRA SHEKAR N V, et al. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3[J]. Chemistry of Materials, 2001, 13(6): 2068-2071.DOI: 10.1021/cm000888q. [82] LARSON P. Effects of uniaxial and hydrostatic pressure on the valence band maximum in Sb2Te3: An electronic structure study[J]. Physical Review B, 2006, 74(20): 205113.DOI: 10.1103/PhysRevB.74.205113. [83] STORDEUR M, STÖLZER M, SOBOTTA H, et al. Investigation of the valence band structure of thermoelectric(Bi1-xSbx)2Te3 single crystals[J]. Physica Status Solidi(B), 1988, 150(1): 165-176.DOI: 10.1002/pssb.2221500120. [84] KIM H S, HEINZ N A, GIBBS Z M, et al. High thermoelectric performance in(Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control[J]. Materials Today, 2017, 20(8): 452-459.DOI: 10.1016/j.mattod.2017.02.007. [85] KONG D S, CHEN Y L, CHA J J, et al. Ambipolar field effect in the ternary topological insulator(BixSb1-x)2Te3 by composition tuning[J]. Nature Nanotechnology, 2011, 6(11): 705-709.DOI: 10.1038/nnano.2011.172. [86] HU L P, ZHU T J, WANG Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction[J]. NPG Asia Materials, 2014, 6(2): e88.DOI: 10.1038/am.2013.86. [87] ZHENG G, SU X L, XIE H Y, et al. High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction[J]. Energy & Environmental Science, 2017, 10(12): 2638-2652.DOI: 10.1039/C7EE02677C. [88] HAO F, QIU P F, TANG Y S, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃[J]. Energy & Environmental Science, 2016, 9(10): 3120-3127.DOI: 10.1039/C6EE02017H. ( |
[1] | WANG Shufang, QIAO Shuang, MA Jikui. Lateral photovoltaic effect in Bi2Te3/Si heterojunction [J]. Journal of Hebei University(Natural Science Edition), 2021, 41(5): 488-494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||