[1] 张银龙, 林鹏, Zhang Yinlong, Lin Peng. 秋茄红树林土壤酶活性时空动态 [J]. 厦门大学学报(自然科学版) 1999.doi:10.3321/j.issn:0438-0479.1999.01.025 [2] 周易勇, 李建秋, 张敏. 湿地中碱性磷酸酶的动力学特征与水生植物的关系 [J]. 湖泊科学 2002.doi:10.3321/j.issn:1003-5427.2002.02.006 [3] 梁威, 吴振斌, 周巧红, 詹发萃, 邓家齐. 复合垂直流构建湿地基质微生物类群及酶活性的空间分布 [J]. 云南环境科学 2002.doi:10.3969/j.issn.1673-9655.2002.01.002 [4] 吴振斌, 梁威, 成水平, 贺锋, 傅贵萍, 陈辉蓉, 邓家齐, 詹发萃. 人工湿地植物根区土壤酶活性与污水净化效果及其相关分析 [J]. 环境科学学报 2001.doi:10.3321/j.issn:0253-2468.2001.05.023 [5] 吴振斌, 梁威, 成水平, 周巧红, 邓家齐, 詹发萃. 复合垂直流构建湿地净化污水机制研究 I微生物类群和基质酶 [J]. 长江流域资源与环境 2002.doi:10.3969/j.issn.1004-8227.2002.02.017 [6] 周礼恺. 土壤酶学 [M]. 北京:科学出版社 1987. [7] Kiss S, DRGAN-BULARDA M, RADULESCU D. Biological significance of enzymes accumulated in soil [J]. Advances in Agronomy 1975, 27. [8] Mitsch WJ., Wu XY., Nairn RW., Hey DL., Cronk JK.. PHOSPHORUS RETENTION IN CONSTRUCTED FRESHWATER RIPARIAN MARSHES [J]. Ecological Applications 1995, 3(3). [9] Chrost R J. Microbial enzymes in aquatic environments [M]. New York: Spronger-Verlag 1991. [10] Sinsabaugh R L, ANTIBUS R K, LINKINS A E. Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular enzyme activity [J]. Ecology 1993, 74. [11] McLatchey GP, Reddy KR. Regulation of organic matter decomposition and nutrient release in a wetland soil [J]. Journal of Environmental Quality 1998, 5(5). [12] 哈兹耶夫φ X. 土壤酶活性 [M]. 北京:科学出版社 1980. [13] Kang H, FREEMAN C. Measurement of phosphomonoesterase activity in wetland sediments-a sensitive method using HPLC and UV detection [J]. Archiv fur Hydrobiologie 1997, 1140(03). [14] Kang H, Freeman C. Measurement of cellulase and xylosidase activities in peat using a sensitive fluorogenic compound assay [J]. Communications in Soil Science and Plant Analysis 1998, 17/18(17/18). [15] Kang HoJeong, Freeman C, Kang HJ. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. [J]. Soil Biology and Biochemistry 1999, 3(3). [16] Wright AL, Reddy KR. Phosphorus loading effects on extracellular enzyme activity in evergladeswetland soils [J]. Soil Science Society of America Journal 2001, 2(2). [17] VENKARESWARAN K, NATARAJAN R. Distribution of phosphatase in sediments of Porto Novo [J]. Indian Journal of Marine Sciences 1983, 12. [18] Zhou Y Y, LI J Q, ZHANG M. Temporal and spatial vatiations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu) [J]. Water Research 2002, 36. [19] 张银龙. 九龙江口红树林土壤酶活性等性质及其细根的生态学研究 [D]. 厦门大学 1996. [20] 孙炳寅, 朱长生. 互花米草(Spartina alterniflora)草场土壤微生物生物分布及某些酶活性的影响 [J]. 生态学报 1989, 9(03). [21] Zhou Yiyong, Li Jianqiu, Zhang Min. Vertical variations in kinetics of alkaline phosphatase and P species in sediments of a shallow Chinese eutrophic lake (Lake Donghu) [J]. Hydrobiologia 2001, 1/3(1/3). [22] Boetius A, LOCHTE K. Effects of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments [J]. Marine Ecology Progress Series 1996, 140. [23] Boetius A, LOCHTE K. Regulations of microbial enzymic degradation of organic matter in deep sea sediments [J]. Marine Ecology Progress Series 1994, 104. [24] Jackson C R, FOREMAN C M, SINSABAUGH R L. Microbial enzyme activities as indicator of organic matter processing rates in a lake Erie coastal wetland [J]. Freshwater Biology 1995, 34. [25] Pulford I D, TABATABAI M A. Effects of waterlogging on enzyme activities in soil [J]. Soil Biology & Biochemistry 1988, 20. [26] Savant N K, JAMES A F, McCLELLAN G H. Effects of soil submergence on urea hydrolysis [J]. Soil Science 1985, 140. [27] Newman S, REDDY K R. Alkaline phosphatase activity in the sediment-water column of a hypereutrophic lake [J]. Journal of Environmental Quality 1993, 22. [28] DeBusk W F. Organic matter turnover along a nutrient gradient in the Everglades [D]. Gainesville:Univ Florida 1996. [29] White JR., Reddy KR.. Influence of phosphorus loading on organic nitrogen mineralization ofeverglades soils [J]. Soil Science Society of America Journal 2000, 4(4). [30] Robinson JS, Johnston CT, Reddy KR. Combined chemical and 31P-NMR spectroscopic analysis of phosphorus in wetland organic soils. [J]. Soil Science 1998, 9(9). [31] Freeman C, Liska G, Ostle NJ, Lock MA, Reynolds B, Hudson J. MICROBIAL ACTIVITY AND ENZYMIC DECOMPOSITION PROCESSES FOLLOWING PEATLAND WATER TABLE DRAWDOWN [J]. Plant and Soil 1996, 1(1). [32] Kalinowska K. Eutrophication process in shallow, Macrophyte dominited lake-phosphatase activity in Lake Luknajno(Poland) [J]. Hydrobiologia 1997, 342/343. [33] Wetzel R G. Extracellar enzymatic interactions:storage, redistribution, and interspecific communication [A]. New york:Springer-Verlag 1991. [34] Serrano L, BOON P I. Effects of polyphenolic compounds on alkaline phosphatase activity:Its implication of for phosphorus regeneration in Australian freshwaters [J]. Archiv fur Hydrobiologie 1991, 123. [35] Freeman C, LISKA G, OSTLE N J. Enzymes and the biogeochemical responses of wetlands to climate change [J]. BIOGEOCHEMISTRY 1997, 39. [36] Freeman C, OSTLE N J, KANG H. An enzymic latch on a global carbon store [J]. Nature 2001, 409. [37] Reddy K R, D'ANGELO E M. Biogeochemical indicators to evalute pollutant removal efficiency in Constructed wetlands [J]. Water Science and Technology 1997, 35(05). [38] Kang H., Lock MA., Freeman C.. Trace gas emissions from a north Wales fen - Role of hydrochemistry and soil enzyme activity [J]. Water, air and soil pollution 1998, 1/2(1/2). [39] Dhillion S S, ROY J, ABRAMS M. Assessing the impact of elevated CO2 on Soil Microbial activity in a Mediterranean Model ecosystem [J]. Plant and Soil 1996, 187. [40] Moorhead D L, LINKINS A E. Elevated CO2 alters belowground exoenzyme activities in tussock tundra [J]. Plant and Soil 1997, 189. [41] Barrett DJ, Richardson AE, Gifford RM. Elevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorus. [J]. Australian Journal of Plant Physiology 1998, 1(1). [42] Freeman C, BAXTER R, FARRAR J F. Could competition between plants and concentration [J]. Science of the Total Environment 1998, 220. [43] Kang H, FREEMAN C, ASHENDON T W. Effects of elevated CO2 on fen peat biogeocheminstry [J]. Science of the Total Environment 2001, 279. [44] Freeman C, LOCK M A, REYNOLDS B. Impacts of climatic change on peatland hydrochemistry;a laboratory based experiments [J]. Chemical Ecology 1993, 8. [45] Valiela I. Marine Ecological processes [M]. New york:Springer-Verlag 1995. |