河北大学学报(自然科学版) ›› 2018, Vol. 38 ›› Issue (3): 239-247.DOI: 10.3969/j.issn.1000-1565.2018.03.003
温昕,董洁,舍添添,白国义
收稿日期:
2018-01-12
出版日期:
2018-05-25
发布日期:
2018-05-25
通讯作者:
白国义(1975—),男,河北沧州人,河北大学教授,博士,主要从事催化加氢和绿色合成研究.E-mail:baiguoyi@hotmail.com
作者简介:
温昕(1982—),男,河北安国人,河北大学讲师,博士.主要从事纳米催化方向研究. E-mail:wenxin767@hotmail.com 〓通信作者:白国义(1975—),男,河北沧州人,河北大学教授,博士,主要从事催化加氢和绿色合成研究. E-mail:baiguoyi@hotmail.com
基金资助:
WEN Xin, DONG Jie, SHE Tiantian, BAI Guoyi
Received:
2018-01-12
Online:
2018-05-25
Published:
2018-05-25
摘要: 环己酮/环己醇是重要的化工原料,是生产大宗商品尼龙6和尼龙66的重要中间体. 苯酚加氢法制取环己酮和环己醇,因具有能耗低、原子经济性好、选择性好等特点而被研究工作者广泛研究. 本文主要介绍了苯酚的加氢机理,综述了该反应中不同种类的金属催化剂,总结了其在苯酚加氢制取环己醇和环己酮反应的最新研究进展,并指出了苯酚加氢反应存在的问题和发展方向.
中图分类号:
温昕,董洁,舍添添,白国义. 苯酚加氢研究进展[J]. 河北大学学报(自然科学版), 2018, 38(3): 239-247.
WEN Xin, DONG Jie, SHE Tiantian, BAI Guoyi. Progress in phenol hydrogenation[J]. Journal of Hebei University (Natural Science Edition), 2018, 38(3): 239-247.
[1] ZHONG J W, CHEN J Z, CHEN L M. Selective hydrogenation of phenol and related derivatives[J]. Catalysis Science & Technology, 2014, 4(5): 3555-3569. DOI:10.1039/C4CY00583J. [2] 赵梦思. 高效苯酚选择性加氢催化剂的研究[D].杭州:浙江大学, 2016. ZHAO M S. Selective hydrogenation of phenol over heterogeneous catalysts[D]. Hangzhou:Zhejiang University,2016. [3] MAKOWSKI P, CAKAN R D, ANTONIETTI M, et al. Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon[J]. Chemical Communications, 2008, 0: 999-1001. DOI: 10.1039/B717928F. [4] MATOS J, CORMA A. Selective phenol hydrogenation in aqueous phase on Pd-based catalysts supported on hybrid TiO2-carbon materials. Applied Catalysis A: General, 2011, 404(1-2): 103-112. DOI: 10.1016/j.apcata.2011.07.018. [5] XIANG Y Z, KONG L N, XIE P Y, et al. Carbon nanotubes and activated carbons supported catalysts for phenol in situ hydrogenation: Hydrophobic/hydrophilic effect[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2197-2203. DOI: 10.1021/ie4035253. [6] LIU H Z, JING T, HAN B X, et al. Selective Phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250. DOI: 10.1126/science.1179713. [7] WATANABE S, ARUNAJATESAN V. Influence of acid modification on selective phenol hydrogenation over Pd/activated carbon catalysts[J]. Topics in Catalysis, 2010, 53(15-18): 1150-1152. DOI: 10.1007/s11244-010-9551-3. [8] XU T Y, ZHANG Q F, CHEN J, et al. Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: Role of C, O oxygen species[J]. Applied Surface Science, 2015, 324: 634-639. DOI: 10.1016/j.apsusc.2014.10.165. [9] LI M M, LI Y, JIA L, et al. Tuning the selectivity of phenol hydrogenation on Pd/C with acid and basic media[J]. Catalysis Communications, 2018, 103: 88-91. DOI: 10.1016/j.catcom.2017.09.028. [10] WANG Y, YAO J, LI H R, et al. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J]. Journal of the American Chemical Society, 2011, 133(8): 2362-2365. DOI: 10.1021/ja109856y. [11] FENG G, CHEN P, LOU H. Palladium catalysts supported on carbon-nitrogen composites for aqueous-phase hydrogenation of phenol[J]. Catalysis Science & Technology, 2015, 5(4): 2300-2304. DOI: 10.1039/C4CY01647E. [12] CHEN J Z, ZHANG W, CHEN L M et al. Direct selective hydrogenation of phenol and derivatives over polyaniline-functionalized carbon-nanotube-supported palladium[J]. ChemPlusChem, 2013, 78(2): 142-148. DOI: 10.1002/cplu.201200276. [13] XU G Y, GUO J H, ZHANG Y, et al. Selective hydrogenation of phenol to cyclohexanone over Pd-HAP catalyst in aqueous media[J]. ChemCatChem, 2015, 7(16): 2485-2492. DOI: 10.1002/cctc.201500442. [14] ZHU J F, TAO G H, LIU H Y, et al. Aqueous-phase selective hydrogenation of phenol to cyclohexanone over soluble Pd nanoparticles[J]. Green Chemistry, 2014, 16(5): 2664-2669. DOI: 10.1039/C3GC42408A. [15] CIRTIU C M, DUNLOP-BRIERE A F, MOORES A. Cellulose nanocrystallites as an efficient support for nanoparticles of palladium:Application for catalytic hydrogenation and Heck coupling under mild conditions[J]. Green Chemistry, 2011, 13(2): 288-291. DOI: 10.1039/C0GC00326C. [16] CHENG L, DAI Q G, LI H, et al. Highly selective hydrogenation of phenol and derivatives over Pd catalysts supported on SiO2 and γ-Al2O3 in aqueous media[J]. Catalysis Communications, 2014, 57(57): 23-28. DOI: 10.1016/j.catcom.2014.07.006. [17] ZHANG F W, CHEN S, LI H, et al. Pd nanoparticles embedded in the outer shell of a mesoporous core-shell catalyst for phenol hydrogenation in pure water[J]. RSC Advances, 2015, 5(124): 102811-102817. DOI: 0.1039/C5RA12947H. [18] 张嘉熙, 黄高伟, 张琤, 等. 巯基功能化介孔材料高效锚定钯负载型催化剂的制备及其苯酚加氢催化性能[J]. 催化学报, 2013, 34(8): 1519-1526.DOI:10.1016/S1872-2067(12)60603-2. ZHANG J X, HUANG G W, ZHANG Z,et al. Immobilization of highly active Pd nano-catalysts on functionalized mesoporous silica supports using mercapto groups as anchoring sites and their catalytic performance for phenol hydrogenation[J]. Chinese Journal of Catalysis, 2013, 34(8):1519-1526.DOI:10.1016/S1872-2067(12)60603-2. [19] NELSON N C, MANZANO J S, SADOW A D, et al. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure[J]. ACS Catalysis, 2015, 5(4): 2051-2061. DOI: 10.1021/cs502000j. [20] ZHOU H, HAN B B, SADOW A D, et al. Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media[J]. Green Chemistry, 2017, 19(15): 3585-3594. DOI: 10.1039/C7GC01318C. [21] LIU H L, LI Y W, LUQUE R, et al. A tunable bifunctional water-compatible heterogeneous catalyst for the selective aqueous hydrogenation of phenols[J]. Advanced Synthesis & Catalysis, 2011, 353(17): 3107-3113. DOI: 10.1002/adsc.201100479. [22] ZHANG D M, GUAN Y J, HENSEN E J M, et al. Porous MOFs supported palladium catalysts for phenol hydrogenation: A comparative study on MIL-101 and MIL-53[J]. Catalysis Communications, 2013, 41(21): 47-51. DOI: 10.1016/j.catcom.2013.06.035. [23] ZHANG D M, GUAN Y J, HENSEN E J M, et al. Tuning the hydrogenation activity of Pd NPs on Al-MIL-53 by linker modification[J]. Catalysis Science & Technology, 2014, 4(3):795-802. DOI: 10.1039/C3CY00910F. [24] ERTAS I E, GULCAN M, BUIUT A, et al. Rhodium nanoparticles stabilized by sulfonic acid functionalized metal-organic framework for the selective hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2015,410: 209-220. DOI: 10.1016/j.molcata.2015.09.025. [25] KUKLIN S, MAXIMOV A, ZOLOTUKHONA A, et al. New approach for highly selective hydrogenation of phenol to cyclohexanone: Combination of rhodium nanoparticles and cyclodextrins[J]. Catalysis Communications, 2016, 73: 63-68. DOI: 10.1016/j.catcom.2015.10.005. [26] MAKSIMOV A L, KUKLIN S N, KARDASHEVA Y S, et al. Hydrogenation of phenols in ionic liquids on rhodium nanoparticles[J]. Petroleum Chemistry, 2013, 53(3): 157-163. DOI: 10.1134/S0965544113030043. [27] YANG X, YU X, LONG L Z, et al. Pt nanoparticles entrapped in titanate nanotubes(TNT)for phenol hydrogenation: the confinement effect of TNT[J]. Chemical Communications, 2014, 50(21): 2794-2796. DOI: 10.1039/C3CC49331H. [28] SRINIVAS S T, LSKSHMI L J, RAN P K. Selectivity dependence on the alloying element of carbon supported Pt-alloy catalysts in the hydrogenation of phenol[J]. Applied Catalysis A: General, 1994, 110(2): 167-172. DOI: 10.1016/0926-860X(94)80193-2. [29] ERTAS I E, GULCAN M, BULUT A, et al. Metal-organic framework(MIL-101)stabilized ruthenium nanoparticles: Highly efficient catalytic material in the phenol hydrogenation[J]. Microporous and Mesoporous Materials, 2016, 226: 94-103. DOI: 10.1016/j.micromeso.2015.12.048. [30] GALLETTI A M R, ANTONETTI C, LONGO L, et al. A novel microwave assisted process for the synthesis of nanostructured ruthenium catalysts active in the hydrogenation of phenol to cyclohexanone[J]. Applied Catalysis A: General, 2008, 350(1): 46-52. DOI: 10.1016/j.apcata.2008.07.044. [31] LU F, LIU J, XU J. Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media[J]. Materials Chemistry and Physics, 2008, 108(2-3): 369-374. DOI: 10.1016/j.matchemphys.2007.10.010. [32] MAXIMOV A, ZOIOTUKHINA A, MURZIN V, et al. Ruthenium nanoparticles stabilized in cross-linked dendrimer matrices: Hydrogenation of phenols in aqueous media[J]. ChemCatChem, 2015, 7(7): 1197-1210. DOI: 10.1002/cctc.201403054. [33] 石斌, 成文文, 孔庆洋. 漆原镍催化剂用于苯酚催化加氢[J]. 燃料化学学报, 2015, 43(10): 1252-1257. SHI B, CHENG W W, KONG Q Y. Hydrogenation of phenol over Urushibara Ni catalysts reduced by zinc powder[J].Journal of Fuel Chemistry and Technology, 2015, 43(10):1252-1257. [34] HE J, LU X H, SHEN Y, et al. Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium[J]. Molecular Catalysis, 2017, 440: 87-95. DOI: 10.1016/j.mcat.2017.07.016. [35] ZHANG Q S, LI H F, GAO P, et al. PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives[J]. Chinese Journal of Catalysis, 2014, 35(11): 1793-1799. DOI: 10.1016/S1872-2067(14)60203-5. [36] XIANG Y Z, LI X, LU C S, et al. Reaction performance of hydrogen from aqueous-phase reforming of methanol or ethanol in hydrogenation of phenol[J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3139-3144. DOI: 10.1021/ie101411h. [37] ZHAO C, KASAKOV S, HE J Y, et al. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation[J]. Journal of Catalysis, 2012, 296: 12-23. DOI: 10.1016/j.jcat.2012.08.017. [38] SONG W J, LIU Y S, BARATH E, et al. Synergistic effects of Ni and acid sites for hydrogenation and C-O bond cleavage of substituted phenols[J]. Green Chemistry, 2015, 17(2): 1204-1218. DOI: 10.1039/C4GC01798F. [39] BAI G Y, LI F, FAN X X, et al. Continuous hydrogenation of hydroquinone to 1,4-cyclohexanediol over alkaline earth metal modified nickel-based catalysts[J]. Catalysis Communications, 2012, 17: 126-130. DOI: 10.1016/j.catcom.2011.10.026. [40] 褚晓宁, 牛立博, 陈波. 4-甲氧基环己酮的绿色合成[J]. 精细化工, 2018, 2:134-139.DOI:10.13550/j. jxhg. 2018.02:027. CHU X N, NIU L B, CHEN B, et al. Green synthesis of 4-methoxycyclohexanone[J]. FINE CHEMICALS, 2018, 2:134-139.DOI:10.13550/j. jxhg. 2018.02.027. |
[1] | 葛嘉雨,梁海燕,刘冬,李春灵,张丰泉,赵茜. 柱前衍生-SPE-GC/MS法测定水中痕量溴代苯酚[J]. 河北大学学报(自然科学版), 2022, 42(4): 395-402. |
[2] | 白国义,聂世琳,李文炅. 水滑石衍生镍基纳米催化剂对邻苯二甲酸二辛酯加氢反应的调控[J]. 河北大学学报(自然科学版), 2021, 41(5): 503-510. |
[3] | 田立霞,黄元生,赵恒凤,孙仕泽,邓佳佳. 均衡条件下加氢站的选址定容优化[J]. 河北大学学报(自然科学版), 2021, 41(3): 245-250. |
[4] | 韩雪,冯文慧,聂世琳,兰兴旺. 载体对纳米NiB催化肉桂酸加氢催化活性与稳定性的影响[J]. 河北大学学报(自然科学版), 2018, 38(6): 603-609. |
[5] | 武金霞,范君姣,赵敬敬,张贺迎. 苯酚污染对蚯蚓抗氧化酶系活性及同工酶组分的影响[J]. 河北大学学报(自然科学版), 2017, 37(2): 155-160. |
[6] | 牛立博,褚晓宁,张淼,褚海龙,白国义. Ni-La@mSiO2催化剂的制备及其在二苯酮加氢反应中的性能[J]. 河北大学学报(自然科学版), 2016, 36(4): 369-373. |
[7] | 孙汉文,夏祥华. 径向基函数神经网络用于毛细管电泳同时检测水中苯二酚、苯酚和对硝基苯酚[J]. 河北大学学报(自然科学版), 2013, 33(3): 252-257. |
[8] | 白国义,韩捷,闫喜龙. 以羧酸为酰化试剂的Friedel-Crafts酰基化反应[J]. 河北大学学报(自然科学版), 2011, 31(6): 658-667. |
[9] | 孙秋红,吴彦,鲁娜,李杰. 臭氧化处理负载对硝基苯酚的活性炭纤维[J]. 河北大学学报(自然科学版), 2010, 30(5): 521-524. |
[10] | 王书香,武倩倩,段杰,郭少波. 无溶剂合成2-氨基噻唑和2-甲基噻唑衍生物[J]. 河北大学学报(自然科学版), 2010, 30(1): 53-57. |
[11] | 白国义,王海龙,宁慧森,樊欣欣,窦海洋,赵蔚. 负载型铜基催化剂的制备及其在仲丁醇脱氢和糠醛加氢耦合反应中的应用[J]. 河北大学学报(自然科学版), 2009, 29(4): 381-385. |
[12] | 白国义,贾春伟,宁慧森. 基于钨基催化剂的环己醇氧化反应[J]. 河北大学学报(自然科学版), 2008, 28(6): 635-639. |
[13] | 刘红梅,翟永清,赵菁,宋文玉,杨国忠,张楠. 铬离子催化铈离子氧化甲酸的双核配合物反应机理[J]. 河北大学学报(自然科学版), 2008, 28(1): 57-62,73. |
[14] | 李杰,李楠,李国锋,吴彦. 气相脉冲放电针-板反应器降解水中有机物[J]. 河北大学学报(自然科学版), 2007, 27(6): 646-649. |
[15] | 路达,郝玉芬,李瑾丽. TiO2/紫外光体系降解含酚废水的实验研究[J]. 河北大学学报(自然科学版), 2007, 27(4): 391-394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||