[1] O’REGAN B, GRATZEL M. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1991, 353: 737-740. DOI:org/10.1038/238037a0. [2] GRATZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344. DOI:org/10.1038/35104607. [3] MOTLAK M, BARAKAT N A M, AKHTAR M S, et al. High performance of NiCo nanoparticles-doped carbon nanofibers as counter electrode for dye-sensitized solar cells[J]. Electrochimica Acta, 2015, 160: 1-6. DOI:.org/10.1016/j.electacta.2015.02.063. [4] BARAKAT N A M, AKHTAR M S, YOUSEF A, et al. Pd-Co-doped carbon nanofibers with photoactivity as effective counter electrodes for DSSCs[J]. Chemical Engineering Journal, 2012, 211: 9-15. DOI:.org/10.1016/j.cej.2012.09.040. [5] MOTLAR M, BARAKAT N A M, AKHTAR M S, et al. Influence of GO incorporation in TiO2 nanofibers on the electrode efficiency in dye-sensitized solar cells[J]. Ceramics International, 2015, 41(1): 1205-1212. DOI: org/10.1016/j.ceramint.2014.09.049. [6] KIMURA M, NOMOTO H, MASAKI N, et al. Dye molecules for simple co-sensitization process: fabrication of mixed-dye-sensitized solar cells[J]. Angewandte Chemie International Edition, 2012, 51(18): 4371-4374.DOI:org/10.1002/ange.201108610. [7] YE M, WEN X R, WANG M Y, et al. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes[J]. Materials Today, 2015, 18(3): 155-162.DOI: org/10.1016/j.mattod.2014.09.001. [8] YELLA A, LEE H W, YI C, et al. Porphyrin-sensitized solar cells with cobalt(Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056): 629-634. DOI:10.1126/science.1209688. [9] YUN S, HAGFELDT A, MA T. Pt-free counter electrode for dye-sensitized solar cells with high efficiency[J]. Advanced Materials, 2014, 26(36): 6210-6237. DOI: org/10.1002/adma.201402056. [10] ZHANG T, LIU Y, YUN S. Recent advances in counter electrodes for thiolate-mediated dye-sensitized solar cells[J]. Israel Journal of Chemistry, 2015, 55(9): 943-954. DOI: org/10.1002/ijch.201400190. [11] WU M, MA T. Recent progress of counter electrode catalysts in dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16727-16742. DOI:10.1021/jp412713h. [12] FANG X M, MA T L, GUAN G Q, et al. Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1): 179-182. DOI: org/10.1016/j.jphotochem.2003.12.024. [13] OLSEN E, HAGEN G, LINDQUIST S E. Dissolution of platinum in methoxy propionitrile containing LiI/I2[J]. Solar Energy Materials and Solar Cells, 2000, 63(3): 267-273. DOI: org/10.1016/S0927-0248(00)00033-7. [14] JIANG Q W, WANG F, GAO X P, et al. Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells[J]. Electrochemistry Communications, 2010, 12(7): 924-927. DOI: org/10.1016/j.elecom.2010.04.022. [15] TAI Q D, CHEN B L, GUO F, et al. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells[J]. Acs Nano, 2011, 5(5): 3795-3799. DOI:10.1021/nn200133g. [16] SAITO Y, KUBO W, KITAMURA T, et al. I-/I3- redox reaction behavior on poly(3, 4-ethylenedioxythiophene)counter electrode in dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1): 153-157. DOI: org/10.1016/j.jphotochem.2003.11.017. [17] SUN H C, QIN D, HUANG S, et al. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique[J]. Energy & Environmental Science, 2011, 4(8): 2630-2637. DOI:10.1039/C0EE00791A. [18] WU M, WANG Y, LIN X, et al. Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes[J]. Physical Chemistry Chemical Physics, 2011, 13(43): 19298-19301. DOI:10.1039/C1CP22819F. [19] WANG M, ANGHEL A M, MARSAN B, et al. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells[J]. Journal of the American Chemical Society, 2009, 131(44): 15976-15977. DOI:10.1021/ja905970y. [20] LI G R, SONG J, PAN G L, et al. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells[J]. Energy & Environmental Science, 2011, 4(5): 1680-1683. DOI:10.1039/C1EE01105G. [21] KANG J S, PARK M A, KIM J Y, et al. Reactively sputtered nickel nitrideas electrocatalytic counter electrode for dye-and quantum dot-sensitizedsolar cells [J]. Sci Rep, 2015,5: 10450. DOI:10.1038/srep10450(2015). [22] WU M X, GUO H Y, LIN Y N, et al. Synthesis of highly effective vanadium nitride(VN)peas as a counter electrode catalyst in dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(24): 12625-12631. DOI:10.1021/jp501797e. [23] CHEN L, DAI H, ZHOU Y, et al. Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells[J]. Chemical Communications, 2014, 50(92): 14321-14324. DOI:10.1039/C4CC03882G. [24] ZHANG X Y, CHEN X, DONG S, et al. Hierarchical micro/nano-structured titanium nitride spheres as a high-performance counter electrode for a dye-sensitized solar cell[J]. Journal of Materials Chemistry, 2012, 22(13): 6067-6071. DOI:10.1039/C2JM30420A. [25] WANG G Q, LIU S M. Porous titanium nitride microspheres on Ti substrate as a novel counter electrode for dye-sensitized solar cells[J]. Materials Letters, 2015, 161: 294-296. DOI: org/10.1016/j.matlet.2015.08.110. [26] HE B, MENG X, TANG Q, et al. Low-cost CoPt alloy counter electrodes for efficient dye-sensitized solar cells[J]. Journal of Power Sources, 2014, 260: 180-185. DOI: org/10.1016/j.jpowsour.2014.03.035. [27] HE B, MENG X, TANG Q. Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 4812-4818. DOI:10.1021/am405706q. [28] HE B, TANG Q, YU L, et al. Cost-effective alloy counter electrodes as a new avenue for high-efficiency dye-sensitized solar cells[J]. Electrochimica Acta, 2015, 158: 397-402. DOI: org/10.1016/j.electacta.2015.01.194. [29] LIU J, TANG Q, HE B, et al. Cost-effective bifacial dye-sensitized solar cells with transparent iron selenide counter electrodes. An avenue of enhancing rear-side electricity generation capability[J]. Journal of Power Sources, 2015, 275: 288-293. DOI: org/10.1016/j.jpowsour.2014.10.152. [30] LIU J, TANG Q, HE B, et al. Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell[J]. Journal of Power Sources, 2015, 282: 79-86. DOI: org/10.1016/j.jpowsour.2015.02.045. [31] LAN Z, QUE L, WU W, et al. Preparation of Pt-NiO/Co3O4 nanocompounds based counter electrodes from Pt-Ni/Co alloys for high efficient dye-sensitized solar cells[J]. Journal of Alloys and Compounds, 2015, 646: 80-85. DOI: org/10.1016/j.jallcom.2015.06.088. [32] HUANG X, ZHAO Z, CAO L, et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction[J]. Science, 2015, 348(6240): 1230-1234. DOI:10.1126/science.aaa8765. [33] LI L, ZHU P, PENG S, et al. Controlled growth of CuS on electrospun carbon nanofibers as an efficient counter electrode for quantum dot-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16526-16535. DOI:10.1021/jp4117529. [34] LI L, ZHANG X, WANG D, et al. Electrospinning synthesis of high performance carbon nanofiber coated flower-like MoS2 nanosheets for dye-sensitized solar cells counter electrode[J]. Electrochimica Acta, 2018, 280: 94-100. DOI: org/10.1016/j.electacta.2018.05.113. [35] FREITAG M, TEUSCHER J, SAYGILI Y, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting[J].Nat Photonics, 2017, 11(6):372. DOI:org/10.1038/nphoton.2017.60. |