[1] DUAN H L, YI X, HUANG Z P. et al. A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework[J].Mech Mater, 2007, 39(1): 81-93. DOI:10.1016/j.mechmat.2006.02.009. [2] DUAN H L, WANG J, KARIHALOO B L, et al. Nanoporous materials can be made stiffer than non-porous counterparts by surface modification[J]. Acta Mater, 54(11): 2983-2990. DOI:10.1016/j.actamat.2006.02.035. [3] DUAN H L, WANG J, KARIHALOO B L. Theory of elasticity at the nanoscale[M] //Advances in Applied Mechanics. Amsterdam:Elsevier, 2009: 1-68. DOI:10.1016/s0065-2156(08)00001-x. [4] DUAN H L, WANG J, HUANG Z P, et al. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress[J]. J Mech Phys of Solids, 2005,53(7): 1574-1596. DOI:10.1016/j.jmps.2005.02.009. [5] FENG X Q, XIA R, LI X D, et al. Surface effects on the elastic modulus of nanoporous materials[J]. Appl Phys Lett, 2009, 94(1): 011916. DOI:10.1063/1.3067999. [6] SOYARSLAN C, HUSSER E, BARGMANN S. Effect of surface elasticity on the elastic response of nanoporous gold[J]. J Nanomech Micromech, 2017, 7(4): 04017013. DOI:10.1061/(asce)nm.2153-5477.0000126. [7] ZHANG W X, WANG T J. Effect of surface energy on the yield strength of nanoporous materials[J]. Appl Phys Lett, 2007, 90(6): 063104. DOI:10.1063/1.2459115. [8] DORMIEUX L, KONDO D. Non linear homogenization approach of strength of nanoporous materials with interface effects[J]. Int J Eng Sci, 2013, 71(11): 102-110. DOI:10.1016/j.ijengsci.2013.04.006. [9] MONCHIET V, KONDO D. Combined voids size and shape effects on the macroscopic criterion of ductile nanoporous materials[J]. Int J Plast, 2013, 43:20-41. DOI:10.1016/j.ijplas.2012.10.007. [10] BRACH S, CHERUBINI S, KONDO D, et al. Void-shape effects on strength properties of nanoporous materials[J]. Mech Res Commun, 2017, 86:11-17. DOI:10.1016/j.mechrescom.2017.10.009. [11] MOSHTAGHIN A F, NAGHDABADI R, ASGHARI M. Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids[J]. Mech Mater, 2012, 51: 74-87. DOI:10.1016/j.mechmat.2012.04.001. [12] DORMIEUX L, LEMARCHAND E, BRISARD S. Equivalent inclusion approach for micromechanics estimates of nanocomposite elastic properties[J]. J Nanomech Micromech, 2016, 6(2): 04016002. DOI:10.1061/(asce)nm.2153-5477.0000104. [13] WANG W, ZENG X, DING J. Finite element modeling of two-dimensional nanoscale structures with surface effects[J]. International Journal of Civil and Environmental Engineering, 2010, 46:12-20. DOI:doi.org/10.5281/zenodo.1055040 [14] JIN H. Surface stress on the effective Young’s modulus and Poisson’s ratio of isotropic nanowires under tensile load[J]. AIP Adv, 2015, 5(11): 117206. DOI:10.1063/1.4935439. [15] TIAN L, RAJAPAKSE R K N D. Finite element modelling of nanoscale inhomogeneities in an elastic matrix[J]. Comput Mater Sci, 2007, 41(1):44-53. DOI:10.1016/j.commatsci.2007.02.013. [16] QIU Y P, WENG G J. A theory of plasticity for porous materials and particle-reinforced composites[J]. J Appl Mech, 1992, 59(2): 261-268. DOI:10.1115/1.2899515. [17] JIN HJ, WEISSMÜLLER J, FARKAS D. Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts[J]. MRS Bull, 2018, 43(1):35-42. DOI:10.1557/mrs.2017.302. ( |