[1] KHURSHEED B A, BUSHRA K, SIDRA B, et al. Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111454. DOI:10.1016/j.rser.2021.111454. [2] YOGALAKSHMI K N, POORNIMA D T, SIVASHANMUGAM P, et al. Lignocellulosic biomass-based pyrolysis: A comprehensive review[J]. Chemosphere, 2021, 286: 131824. DOI:10.1016/j.rser.2021.111454. [3] CAI W, LUO Z, ZHOU J, et al. A review on the selection of raw materials and reactors for biomass fast pyrolysis in China[J]. Fuel Processing Technology, 2021, 221: 106919. DOI:10.1016/j.chemosphere.2021.131824. [4] YANG H P,LIU M,CHEN H P, et al. Vapor-solid interaction among cellulose, hemicellulose and lignin[J]. Fuel, 2020, 263(1):116681.DOI:10.1016/j.fuel.2019.116681. [5] YANG H M, APPARIA S, KUDO S, et al. Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin[J]. Industrial and Engineering Chemistry Research, 2015, 54(27): 6855-6864. DOI:10.1021/acs.iecr.5b01289. [6] ZONG P, JIANG Y, TIAN Y, et al. Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil[J]. Energy Conversion and Management, 2020, 216: 112777. DOI: 10.1016/j.enconman.2020.112777. [7] COUHERT C, COMMANDRE J M, SALVADOR S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin[J]. Fuel, 2009, 88(3): 408-417. DOI:10.1016/j.fuel.2008.09.019. [8] 宋飞跃,丁浩植,张立强,等.生物质三组分混合热解耦合作用研究[J].太阳能学报,2019,40(1):149-156. [9] 杨华美,李靖,庄文昌,等.纤维素与木质素共热解行为研究及产物分析[J].福州大学学报(自然科学版),2021, 49(4):557-562. [10] CHEN L, LIAO Y, GUO Z, et al. Products distribution and generation pathway of cellulose pyrolysis[J]. Journal of Cleaner Production, 2019, 232:1309-1320. DOI: 10.1016/j.jclepro.2019.06.026. [11] WANG S R, GUO X J, WANG K G, et al. Influence of the interaction of components on the pyrolysis behavior of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 183-189. DOI: 10.1016/j.jaap.2011.02.006. [12] DAVID O U, PÄIVI Y, ADRIAN M, et al. Primary interactions of biomass components during fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 159: 105297. DOI: 10.1016/j.jaap.2021.105297. [13] 胡仪明.木质生物质各组分热解过程和热力学特性研究[D]. 北京:中国林业科学研究院,2013. [14] YANG H-M, FURUTANI Y, KUDO S, et al. Experimental investigation of thermal decomposition of dihydroxybenzene isomers: catechol, hydroquinone, and resorcinol[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 321-329. DOI: 10.1016/j.jaap.2016.05.019. [15] LEDESMA E-B, HOANG J-N, NGUYEN Q, et al. Unimolecular decomposition pathway for the vapor-phase cracking of eugenol, A biomass tar compound[J]. Energy and Fuel, 2013, 27: 6839-6846. DOI: 10.1021/ef401760c. [16] NORINAGA K, DEUTSCHMANN O, SAEGUSA N, et al. Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86: 148-60. DOI: 10.1016/j.jaap.2009.05.001. [17] 杨华美,李靖,堵锡华.木质素单体模化物的热解与产物分析[J].浙江大学学报(工学版),2021,55(05):976-983+1018. ( |