[1] DONG J N, LU G W, TU Y Y, et al. Recent research progress of red-emitting/near-infrared fluorescent probes for biothiols[J]. New J Chem, 2022, 46(23): 10995-11020. DOI: 10.1039/D1NJ06244A. [2] 周柯岩,杨瑜涛,李华肖,等. 一种检测生物硫醇的荧光探针[J]. 河北大学学报(自然科学版), 2020, 40(1): 27-32. DOI: 10.3969/j.issn.1000-1565.2020.01.005. [3] 孟美荣, 阴彩霞. 一种荧光增强型的GSH荧光探针[J]. 河北大学学报(自然科学版), 2019, 39(1): 49-55. DOI: 10.3969/j.issn.1000-1565.2019.01.009. [4] PRESSMAN, MD P, BRIDGE W J, ZARKA M H, et al. Dietary γ-glutamylcysteine: Its impact on glutathione status and potential health outcomes[J]. J Diet Suppl, 2022, 19(2): 259-270. DOI: 10.1080/19390211.2020.1856266. [5] MADHU M, SANTHOSHKUMAR S, TSENG W B, et al. Optical nanoprobes for aminothiols sensing in real-world samples[J]. Sens Actuat Rep, 2022, 4: 100123. DOI: 10.1016/j.snr.2022.100123. [6] JIANG S, WANG S, ZHAO Z, et al. A ratiometric fluorescent probe for the detection of biological thiols based on a new supramolecular design[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2023, 303: 123167. DOI: 10.1016/j.saa.2023.123167. [7] 林利霞,郭春青,王利斌,等. 一种含SNAP-tagTM底物的硫醇荧光探针[J]. 河北大学学报(自然科学版), 2024, 44(5): 504-512. DOI: 10.3969/j.issn.1000 1565.2024.05.007. [8] RUDRESHKUMAR K J, MAJUMDAR V, NAGARAJA D, et al. Relevance of plasma levels of free homocysteine and methionine as risk predictors for ischemic stroke in the young[J]. Clin Nutr, 2018, 37(5): 1715-1721. DOI: 10.1016/j.clnu.2017.07.005. [9] REN A S, QIAO L G, LI K C, et al. Thiol-chromene click reaction-triggered mitochondria-targeted ratiometric fluorescent probe for intracellular biothiol imaging[J]. Anal Bioanal Chem, 2024, 416(28): 6223-6235. DOI: 10.1007/s00216-024-05506-3. [10] LIU Z X, ZHOU W L, LI J J, et al. High-efficiency dynamic sensing of biothiols in cancer cells with a fluorescent β-cyclodextrin supramolecular assembly[J]. Chem Sci, 2020, 11(18): 4791-4800. DOI: 10.1039/D0SC00414F. [11] GHOLAMI M D, NIHAL S, LIU Q, et al. A universal stimuli-responsive biosensor for disease biomarkers through their cysteine residues: A proof of concept on carcinoembryonic antigen(CEA)biomarker [J]. Sensor Actuat B-Chem, 2023, 393: 134208. DOI: 10.1016/j.snb.2023.134208. [12] 周思仪,丁旭,赵永梅,等. 基于黄酮的长波长荧光探针用于检测体外和体内生物硫醇(英文)[J]. 有机化学, 2023, 43(01): 178-185. DOI: 10.6023/cjoc202206016. [13] WANG W, WANG K, WANG X T, et al. A novel selective probe for detecting glutathione from other biothiols based on the concept of Fluorescence Fusion [J]. Anal Chim Acta, 2021, 1177: 338786. DOI: 10.1016/j.aca.2021.338786. [14] SZWACZKO K. Fluorescent coumarin-based probe for detection of biological Thiols [J]. Curr Org Chem, 2023, 27(15): 1329-1335. DOI: 10.2174/0113852728247683231006064932. [15] DALY B, LING J, DE SILVA A P. Current developments in fluorescent PET(photoinduced electron transfer)sensors and switches[J]. Chem Soc Rev, 2015, 44(13): 4203-4211. DOI: 10.1039/C4CS00334A. [16] JUN J V, CHENOWETH D M, PETERRSSON E J. Rational design of small molecule fluorescent probes for biological applications[J]. Org Biomol Chem, 2020, 18(30): 5747-5763. DOI: 10.1039/D0OB01131B. [17] YANG M W, FAN J L, DU J J, et al. Small-molecule fluorescent probes for imaging gaseous signaling molecules: current progress and future implications[J]. Chem Sci, 2020, 11(20): 5127-5141. DOI: 10.1039/d0sc01482f. [18] 段新瑞, 孟天姣. 有机小分子荧光探针的设计及其在酶类肿瘤标志物检测中的研究进展[J]. 河北大学学报(自然科学版), 2021, 41(5): 535-544. DOI: 10.3969/j.issn.1000-1565.2021.05.010. [19] ZHU Y D, PAN H T, SONG Y Y, et al. Mitochondria-targeted fluorescent probe for rapid detection of thiols and its application in bioimaging[J]. Dyes Pigm, 2021, 191: 109376. DOI: 10.1016/j.dyepig.2021.109376. [20] CHEN D G, YANG J L, DAI J, et al. A low background D-A-D type fluorescent probe for imaging of biothiols in living cells[J]. J Mater Chem B, 2018, 6(32): 5248-5255. DOI: 10.1039/c8tb01340c. [21] CHEN S, HOU P, SUN J W, et al. A new long-wavelength emission fluorescent probe for imaging biothiols with remarkable Stokes shift[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 241: 118655. DOI: 10.1016/j.saa.2020.118655. [22] YIN C X, ZHANG W J, LIU T, et al. A near-infrared turn on fluorescent probe for biothiols detection and its application in living cells[J]. Sens Actuat B Chem, 2017, 246: 988-993. DOI: 10.1016/j.snb.2017.02.176. [23] XU K X, HE L W, YANG Y Z, et al. A PET-based turn-on fluorescent probe for sensitive detection of thiols and H2S and its bioimaging application in living cells, tissues and zebrafish[J]. New J Chem, 2019, 43(7): 2865-2869. DOI: 10.1039/C8NJ04926B. [24] YAN D L, LIU L K, LIU Q, et al. Red-emitting coumarin-derived fluorescent probe for thiol detection and indirect recognition of β-Lactamase[J]. Microchem J, 2024, 206: 111622. DOI: 10.1016/j.microc.2024.111622. [25] CHEN J, WANG Z S, SHE M Y, et al. Precise synthesis of GSH-specific fluorescent probe for hepatotoxicity assessment guided by theoretical calculation[J]. ACS Appl Mater Inter, 2019, 11(36): 32605-32612. DOI: 10.1021/acsami.9b08522. [26] LI P, SHI X H, XIAO H B, et al. Two-photon imaging of the endoplasmic reticulum thiol flux in the brains of mice with depression phenotypes[J]. Analyst, 2018, 144(1): 191-196. DOI: 10.1039/c8an01626g. [27] YIN J, KWON Y, KIM D, et al. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues[J]. J Am Chem Soc, 2014, 136(14): 5351-5358. DOI: 10.1021/ja412628z. [28] CHEN H, TANG Y H, REN M G, et al. Single near-infrared fluorescent probe with high-and low-sensitivity sites for sensing different concentration ranges of biological thiols with distinct modes of fluorescence signals[J]. Chem Sci, 2016, 7(3): 1896-1903. DOI: 10.1039/c5sc03591k. ( |