河北大学学报(自然科学版) ›› 2016, Vol. 36 ›› Issue (1): 94-99.DOI: 10.3969/j.issn.1000-1565.2016.01.015

• • 上一篇    下一篇

添加Universum数据的最小二乘投影双支持向量机

鲁淑霞1,佟乐1,朱晨旭2   

  • 收稿日期:2015-07-01 出版日期:2016-01-25 发布日期:2016-01-25
  • 作者简介:鲁淑霞(1966—),女,河北保定人,河北大学教授,博士,主要从事机器学习研究. E-mail:cmclusx@126.com
  • 基金资助:
    国家自然科学基金资助项目(61170040);河北省自然科学基金资助项目(F2015201185;F2013201220)

Least squares projection twin support vector machine with universum

LU Shuxia1,TONG Le1,ZHU Chenxu2   

  1. 1.College of Mathematics and Information Science, Hebei University, Baoding 071002, China; 2.College of Science, Northwest Agriculture & Forestry University, Yangling 712100, China
  • Received:2015-07-01 Online:2016-01-25 Published:2016-01-25

摘要: 通过添加Universum数据,引入了与分类样本无关的样本,并借此引入了先验域信息,构建了添加Universum数据的最小二乘投影双支持向量机(ULSPTSVM).此外,还将方法扩展到递归学习方法,用于进一步提高ULSPTSVM的分类性能.实验表明,ULSPTSVM方法可以直接减少带有Universum数据的双支持向量机(USVM)方法的训练时间,而且在多数情况下ULSPTSVM方法的测试精度优于最小二乘投影双支持向量机(LSPTSVM)方法的测试精度.

关键词: Universum数据, 支持向量机, 双支持向量机, 投影

Abstract: A new algorithm is constructed,called least squares projection twin support vector machine with Universum(ULSPTSVM).By adding Universum data,samples are introduced which have no relation with the samples of classification,which have a priori domain information.In addition,in order to further enhance the performance of ULSPTSVM,the method is extended to recursive learning method.Experiments show that ULSPTSVM can directly improve the training time of twin support vector machine with Universum(UTSVM),and in most cases the experimental accuracy is better than least squares projection twin support vector machine(LSPTSVM).

Key words: Universum data, support vector machine, twin support vector machine, projection

中图分类号: