[1] WESTON J,COLLOBERT R,SINZ F,et al.Inference with the Universum[Z].The 23rd International Conference on Machine Learning,Pittsburgh,2006. [2] CHERKASSKY V,DHAR S,DAI W.Practical conditions for effectiveness of the universum learning[J].IEEE Transactions on Neural Networks,2011,22(8):1241-1255.DOI:10.1109/TNN.2011.2157522. [3] SINZ F H,CHAPELLE O,AGARWAL A,et al.An analysis of inference with the universum[Z].The 21st Annual Lonference Neural Information Processing Systems,Vancouver,2008. [4] CHEN S,ZHANG C.Selecting informative universum sample for semisupervised learning[Z].The International Joint Conference on Artificial Intelligent,Pasadna,2009. [5] SHEN C,WANG P,SHEN F,et al.Uboost:Boosting with the universum[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2012,34(4):825-832.DOI:10.1109/TPAMI.2011.240. [6] JAYADEVA R,KHEMCHANDANI S,CHANDRA.Twin support vector machines for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intellegence,2007,29(5):905-910.DOI:10.1109/TPAMI.2007.1068. [7] KUMAR M A,GOPAL M.Application of smoothing technique on twin support vector machines[J].Pattern Recognition Letters,2008,29(13):1842-1848.DOI:10.1016/j.patrec.2008.05.016. [8] SHAO Y H,ZHANG C H,WANG X B,et al.Improvements on twin support vector machines[J].IEEE Transactions on Neural Networks,2011,22(6):962-968.DOI:10.1109/TNN.2011.2130540. [9] QI Z Q,TIAN Y J,SHI Y.Twin support vector machine with Universum data[J].Neural Networks,2012,36:112-119.DOI:10.1016/j.neunet.2012.09.004. [10] SHAO Y H,DENG N Y,YANG Z M.Least square recursive projection twin support vector machine for classification[J].Pattern Recognition,2012,45:229-2307.DOI:10.1016/j.patcog.2011.11.028. [11] DING S F,HUA X P.Recursive least square projection twin support vector machine for nonlinear classification[J].Neurocomputing,2014,134:3-9.DOI:10.1016/j.neucom.2013.02.046. [12] MUSICANT D R.NDC:Normally Distributed Clustered Datasets[EB/OL].(1998-01-01)[2015-06-05].1998 <www.cs.wisc.edu/dmi/svm/ndc/>. |