[1] 田振夫.一维对流扩散方程的四阶精度有限差分法[J].宁夏大学学报(自然科学版),1995,16(1):30-35. TIAN Zhenfu.Fourth-order finite difference methods for one-dimensional convection-diffusion equations[J].Journal of Ningxia University(Natural Science Edition),1995,16(1):30-35. [2] 葛永斌,田振夫,詹咏,等.求解扩散方程的一种高精度隐式差分方法[J].上海理工大学学报,2005,27(2):107-112.DOI:10.3969/j.issn.1007-6735.2005.02.004. GE Yongbin,TIAN Zhenfu,ZHAN Yong,et al.High order implicit difference method for the diffusion equation[J].Journal of University of Shanghai for Science and Technology,2005,27(2):107-112.DOI:10.3969/j.issn.1007-6735.2005.02.004. [3] 詹涌强,张传林.解抛物型方程的一族高精度隐式差分格式[J].应用数学和力学,2014,35(7):790-797.DOI:10.3879/j.issn.1000-0887.2014.07.008. ZHAN Yongqiang,ZHANG Chuanlin.A family of high accuracy implicit difference schemes for solving parabolic equatons[J].Applied Mathematics and Mechanics,2014,35(7):790-797.DOI:10.3879/j.issn.1000-0887.2014.07.008. [4] 詹涌强,张传林.解抛物型方程的一个新的高精度隐格式[J].华中师范大学学报(自然科学版),2014,48(2):168-170. ZHAN Yongqiang,ZHANG Chuanlin.A new high accuracy implicit difference schemes for solving parabolic equatons[J].Journal of Huazhong Normal University(Natural Science Edition),2014,48(2):168-170. [5] 周敏,高学军,董超.解抛物型方程的八点隐式差分格式[J].广东工业大学学报,2014,31(4):71-78.DOI:10.3969/j.issn.1007-7162.2014.04.013. ZHOU Min,GAO Xuejun,DONG Chao.The implicitght difference scheme of eight points for solving the parabolic equtions[J].Journal of Guangdong University of Technology,2014,31(4):71-78.DOI:10.3969/j.issn.1007-7162.2014.04.013. [6] 于德浩,汤华中.偏微分方程数值解法[M].北京:科学出版社,2004:106-109. YU Dehao,TANG Huazhong.Numerical solution of partial differential equation[M].Beijing:Science Press,2004:106-109. [7] 杨情民.解抛物型方程的一族显格式[J].高等学校计算数学学报.1981,4:306-317. YANG Qingmin.A family of explicit schemes for solving the parabolic equations[J].Journal of High School Mathematics,1981,4:306-317. [8] 曾文平.多维抛物型方程的分支绝对稳定的显式格式[J].高等学校计算数学学报,1997,19(2):112-121. ZENG Wenping.Explicit scheme for the absolute stability of the multi dimensional parabolic equations[J].Journal of High School Mathematics,1997,19(2):112-121. [9] 金承日.解抛物型方程的高精度显式差分格式[J].计算数学,1991,13(1):38-44.DOI:10.3321/j.issn:0254-7791.1991.01.001. JIN Chengri.High accuracy explicit difference scheme for solving parabolic equations[J].Computational Mathematics,1991,13(1):38-44.DOI:10.3321/j.issn:0254-7791.1991.01.001. [10] 马明书.一维抛物型方程的一个新的高精度显式差分格式[J].数值计算与计算机应用,2001,22(2):156-160.DOI:10.3969/j.issn.1000-3266.2001.02.010. MA Mingshu.A new high accuracy explicit difference scheme with branching stable for solving parabolic equation of one-dimension[J].Numerical Computation and Computer Application,2001,22(2):156-160.DOI:10.3969/j.issn.1000-3266.2001.02.010. [11] 马明书.抛物型方程的一个新的显格式[J].纺织高校基础科学学报,2001,14(2):133-135.DOI:10.3969/j.issn.1006-8341.2001.02.010. MA Mingshu.A new explicit difference scheme with high accuracy for solving parabolic type equation[J].Journal of Basic Science of Textile University,2001,14(2):133-135.DOI:10.3969/j.issn.1006-8341.2001.02.010. [12] 徐金平,单双荣.解抛物型方程的一个高精度显式差分格式[J].华侨大学学报(自然科学版),2009,30(4):473-475.DOI:10.11830/ISSN.1000-5013.2009.04.0473. XU Jinping,SHAN Shuangrong.An explicit difference scheme with high-order accuracy for solving parabolic equation[J].Journal of Huaqiao University(Natural Science),2009,30(4):473-475.DOI:10.11830/ISSN.1000-5013.2009.04.0473. [13] 袁权龙,詹再东.抛物方程高精度高稳定显格式研究[J].山西师范大学学报(自然科学版),2009,23(4):27-30.DOI:10.3969/j.issn.1009-4490.2009.04.007. YUAN Quanlong,ZHAN Zaidong.High accuracy and stable explicit scheme for the parabolic equation[J].Journal of Shanxi Normal University(Natural Science Edition),2009,23(4):27-30.DOI:10.3969/j.issn.1009-4490.2009.04.007. [14] WEN ruihao,Shao Hongzhu.Domain decomposition schemes with high-order accuracy and unconditional stability[J].Appl Math Comput,2013,219:6170-6181.DOI:http://dx.doi.org/10.1016/j.amc.2012.12.001. [15] LELE S K.Compact finite difference schemes with spectral-like resolution[J].J Comput Phys,1992,103:16-42. |