[1] 崔超,杨婷婷,刘吉臻,等.基于BP网络变量选择与LSSVM结合的锅炉脱硝经济性建模[J].中国电机工 程学报,2015,35(24):6413-6420.DOI:10.13334/j.0258-8013.pcsee.2015.24.017. CUI C,YANG T T,LIU J Z,et al.Denitration cost modeling for boilers based on BP variable selection and LSSVM[J].Proceedings of the CAEE,2015,35(24):6413-6420.DOI:10.13334/j.0258-80 13.pcsee.2015.24.017. [2] 武宝会,崔利.火电厂SCR烟气脱硝控制方式及其优化[J].热力发电,2013,42(10):116-119.DOI:10.3969/j.issn.1002-3364.2013.10.116. WU B H,CUI L.SCR flue gas denitrification control and optimization in thermal power plants[J].Thermal Power Generation,2013,42(10):116-119.DOI:10.3969/j.issn.1002-3364.2013.10.116. [3] 韩良云,陆金桂.神经网络球磨机出力软测量模型的建立[J].动力工程学报,2015,35(11):901-905+933. HAN L Y,LU J G.Modeing for soft sensing of coal mill output based on neural network[J].Chinese Journal of Power Engineering,2015,35(11):901-905+933. [4] 杨耀权,张新胜.LSSVM动态软测量模型在磨煤机一次风量预测方面的应用[J].动力工程学报,2016,36(03):207-212. YANG Y Q,ZHANG X S.Soft-sensing of pri mary air flow in a coal mill based on LSSVM[J].Chinese Journal of Power Engineering,2016,36(03):207-212. [5] 金秀章,郝兆平,佟纯涛,等.KPCA和LSSVM在SCR脱硝反应器入口NO_x含量软测量中的应用[J].工业仪表与自动化装置,2016,45(05):124-128. JIN X Z,HAO Z P,TONG C T,et al.The application of KPCA and LSSVM in the soft-sensing of SCR denitration reactor inlet NOx content[J].Industrial instrumentation automation,2016,45(05):124-128. [6] QIAO J F,ZHANG Y,HAN H G.Fast unit pruning algorithm for feedforward neural network design[J].Applied Mathematics and Computation,2008,205(02):622-627.DOI:10.1016/j.amc.2008.05.049. [7] 金秀章,张少康,尹子剑,等.时序-神经网络模型在磨煤机一次风量测量中的应用[J].自动化仪表,2017,38(01):46-49.DOI:10.16086/j.cnki.issn1000-0380.201701011. JIN X Z,ZHANG S K,YIN Z J,et al.Application of time sequence Neural Network Model in Measuremet of Primary Air Flow of Pulverizer[J].Process automation instrumentation,2017,38(01):46-49.DOI:10.1 6086/j.cnki.issn1000-0380.201701011. [8] 胡学聪,李柠,李少远,等.基于Matlab的SCR烟气脱硝仿真平台设计[J].系统仿真学报,2010,22(0 1):71-74.DOI:10.16182/j.cnki.joss.2010.01.004. HU X C,LI N,LI S Y,et al.Development of simulation platform based on matlab for SCR flue gas denitration[J].Journal of system simulation,2010,22(01):71-74.DOI:10.16182/j.cnki.joss.2 010.01.004. [9] 金秀章,韩超.KPCA-LSSVM在磨煤机一次风量预测中的应用[J].自动化仪表,2015,36(03):62-67.DOI:10.16086/j.cnki.issn1000-0380.201503017. JIN X Z,HAN C.Application of KPCA-LSSVM in prediction of the primary air flow of pulverizer[J].Process automation instrumentation,2015,36(03):62-67.DOI:10.16086/j.cnki.issn1000-038 0.201503017. [10] 黄宴委,彭铁根.基于核主元分析的非线性动态故障诊断[J].系统仿真学报,2005,17(09):2291-2294.D OI:10.16182/j.cnki.joss.2005.09.064. HUANG Y W,PENG T G.Fault diagnosis for nonlinear dynamic system using kernel principal component analysis[J].Journal of system simulation,2005,17(09):2291-2294.DOI:10.16182/j.cnki.joss.2005.09.064. [11] 王玉昆,党金梗.基于KPCA与ILSFA-LSSVM的浮选加药控制模型[J].控制工程,2017,24(02):326-3 30.DOI: 10.14107/j.cnki.kzgc.140465. WANG Y K,DANG J G.Flotation dosing control modelbased on KPCA and ILSFA-LSSVM[J].Co- ntrol engineering,2017,24(02):326-330.DOI: 10.14107/j.cnki.kzgc.140465. [12] 洪文鹏,陈重.基于自适应粒子群优化BP神经网络的氨法烟气脱硫效率预测[J].动力工程学报,2013,33(04):290-295. HONG W P,CHEN Z.Efficiency prediction of ammonia flue gas desulfurization based on adaptive PSO-BP model[J].Chinese Journal of Power Engineering,2013,33(04):290-295. [13] 向怀坤,李伟龙,谢秉磊.粒子群优化神经网络的交通事件检测算法研究[J].计算机测量与控制,2016,24(02):171-174.DOI:10.16526/j.cnki.11-4762/tp.2016.02.047. XIANG H K,LI W L,XIE B L.Research on traffic incident detection algorithm based on particle swarm optimizer neural network[J].Computer measurement&control,2016,24(02):171-174.DOI:10.16526/ j.cnki.11-4762/tp.2016.02.047. [14] 乔俊飞,李瑞祥,柴伟,等.基于PSO-ESN神经网络的污水BOD预测[J].控制工程,2016,23(04):463-467.DOI:10.14107/j.cnki.kzgc.140445. QIAO J F,LI R X,CHAI W,et al.Prediction of BODbased on PSO-ESN Neural Network[J].Control Engineering of China,2016,23(04):463-467.DOI:10.14107/j.cnki.kzgc.140445. [15] 张英堂,马超,李志宁,等.基于快速留一交叉验证的核极限学习机在线建模[J].上海交通大学学报,2014,48(05):641-646. ZHANG Y T,MA C,LI Z N,et al.Online modeling of kernel extreme learning machine based on fast leave-one-out crossvalidation[J].Journal of Shanghai Jiaotong University,2014,48(05):641-646. [16] 李云路,王大志,宁一,等.基于复变自适应神经网络的电网相位估计方法[J].东北大学学报(自然科学版),2017,38(1):6-10.DOI:10.3969/j.issn.1005-3026.2017.01.002. LI Y L,WANG D Z,NING Y,et al.Phase estimation method for power system based on complex adaptive neural network[J].Journal of Northrastern University Natural Science,2017,38(01):6-10.DOI:10.3969/j.issn.1005-3026.2017.01.002. |