[1] SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells [J]. Sci Adv, 2017, 3(10):eaao4204. DOI:10.1126/sciadv.aao4204. [2] CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nat Photonics, 2018, 12: 681-687. DOI:10.1038/s41566-018-0260-y. [3] SHEN Y, CHENG L P, LI Y Q, et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement[J]. Adv Mater, 2019, 31(24): 1901517. DOI:10.1002/adma.201901517. [4] YANG T, ZHENG Y, DU Z, et al. Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability[J]. ACS Nano, 2018, 12(2): 1611-1617. DOI:10.1021/acsnano.7b08201. [5] BI C H, KERSHAW S V, ROGACH A L, et al. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol[J]. Adv Funct Mater, 2019, 29(29): 1902446. DOI:10.1002/adfm.201902446. [6] LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Adv Funct Mater, 2016, 26(15):2584-2584. [7] LIU F, ZHANG Y H, DING C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield [J]. Acs Nano, 2017, 11(10):10373-10383. [8] YANG X L, ZHANG X W, DENG J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation[J]. Nat Commun, 2018, 9: 570. DOI:10.1038/s41467-018-02978-7. [9] SETH S, SAMANTA A. Photoluminescence of zero-dimensional perovskites and perovskite-related materials [J]. J Phys Chem Lett, 2018, 9(1):176-183. DOI:10.1021/acs.jpclett.7b02931. [10] UTHIRAKUMAR P, YUN J H, DEVENDIRAN M, et al. Synthesis of thermally stable and highly luminescent spherical shaped ligand-free Cs4PbBr6 nanospheres with a single polar solvent [J]. J Lumin, 2019, 209:163-169. [11] WANG Q, WU W Z, WU R R, et al. Improved thermal stability of photoluminescence in Cs4PbBr6 microcrystals/CsPbBr3 nanocrystals [J]. Journal of Colloid and Interface Science, 2019, 554:133-141. [12] ZHANG Y M, FAN B L, WU W H, et al. Cs/CsPbX3(X=Br, Cl)epitaxial heteronanocrystals with magic-angle stable/metastable grain boundary [J]. Appl Phys Lett, 2017, 110(19):1-5. [13] TONG Y, BOHN B J, BLADT E, et al. From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly[J]. Angewandte Chemie Int Ed, 2017, 56(44): 13887-13892. DOI:10.1002/anie.201707224. [14] CHEN J, FU Y P, SAMAD L, et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites(CsPbX3, X = Cl, Br, I)[J]. Nano Lett, 2017, 17(1): 460-466. DOI:10.1021/acs.nanolett.6b04450. [15] JIANG J T, WANG D Y, WU M F, et al. Ultrasonication-assisted trace amount solvent synthesis of Cs4PbBr6 crystal with ultra-bright green light emission[J]. APL Mater, 2020, 8(7): 071115. DOI:10.1063/5.0009852. [16] ZHANG W, WEI J J, GONG Z L, et al. Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals[J]. Adv Sci, 2020, 7(22): 2002210. DOI:10.1002/advs.202002210. [17] WANG W K, WANG D F, FANG F, et al. CsPbBr3/Cs4PbBr6 nanocomposites: formation mechanism, large-scale and green synthesis, and application in white light-emitting diodes [J]. Crystal Growth & Design, 2018, 18(10):6133-6141. [18] ARUNKUMAR P, CHO H B, GIL K H, et al. Probing molecule-like isolated octahedra via phase stabilization of zero-dimensional cesium lead halide nanocrystals[J]. Nat Commun, 2018, 9: 4691. DOI:10.1038/s41467-018-07097-x. [19] LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. J Am Chem Soc, 2016, 138(45): 14954-14961. DOI:10.1021/jacs.6b08085. [20] BAI D L, ZHANG J R, JIN Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2br solar cells [J]. ACS energy letters, 2018, 3: 970-978. [21] SHI W B, ZHANG X, CHEN H S, et al. Transition metal halide derived phase transition from Cs4PbCl6 to CsPbxM1-xX3 for bright white light-emitting diodes[J]. J Mater Chem C, 2021, 9(17): 5732-5739. DOI:10.1039/D1TC01150B. [22] QIU Y X, MA Z M, DAI G K, et al. Doped 0D Cs4PbCl6 single crystals featuring full-visible-region colorful luminescence[J]. J Mater Chem C, 2022, 10(16): 6227-6235. DOI:10.1039/D2TC00638C. [23] LI L J, ZHANG Z H. In-situ fabrication of Cu doped dual-phase CsPbBr3-Cs4PbBr6 inorganic perovskite nanocomposites for efficient and selective photocatalytic CO2 reduction[J]. Chem Eng J, 2022, 434: 134811. DOI:10.1016/j.cej.2022.134811. [24] HE M L, CHENG Y Z, YUAN R R, et al. Mn-doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED[J]. Dyes Pigments, 2018, 152: 146-154. DOI:10.1016/j.dyepig.2018.01.045. [25] ZHANG J R, WANG Q, ZHANG X S, et al. High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals[J]. RSC Adv, 2017, 7(58): 36722-36727. DOI:10.1039/c7ra06597c. [26] CHEN D Q, FANG G L, CHEN X, et al. Mn-Doped CsPbCl3 perovskite nanocrystals: solvothermal synthesis, dual-color luminescence and improved stability [J]. J Mater Chem C, 2018, 6:8990-8998. [27] XUAN T T, LOU S Q, HUANG J J, et al. Monodisperse and brightly luminescent CsPbBr3/Cs4PbBr6 perovskite composite nanocrystals[J]. Nanoscale, 2018, 10(21): 9840-9844. DOI:10.1039/c8nr01266k. ( |