[1] 杨昆,罗萍,吕一品,等.一种基于 GA_Faster R-CNN 的掌指骨骨折计算机辅助诊断系统[J].河北大学学报(自然科学版), 2021, 41(4): 412. DOI: 10.3969/j.issn.1000-1565.2021.04.011. [2] 刘爽,田兆星,李浩然,等.一种基于改进 YOLOv5s 网络的结直肠腺瘤实时检测方法[J].河北大学学报(自然科学版), 2022, 42(3): 327. DOI: 10.3969/j.issn.1000-1565.2022.03.016. [3] 李浩然,刘琨,常世龙,等.基于残差混合域注意力网络的PET超分辨率重建方法[J].电子测量技术, 2021, 44(14): 103-110. DOI:10.19651/j.cnki.emt.2106998. [4] 薛林雁,李轩昂,齐晁仪,等.基于改进 YOLOv5s 的肠镜息肉多分类实时检测方法[J].河北大学学报(自然科学版), 2024, 44(4): 424. DOI: 10.3969/j.issn.1000-1565.2024.04.011 [5] PINEDA F, AYMA V, BELTRAN C. A generative adversarial network approach for super-resolution of sentinel-2 satellite images[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2020, XLIII-B1-2020: 9-14. DOI:10.5194/isprs-archives-xliii-b1-2020-9-2020. [6] 许博鸣,刘晓峰,业巧林,等.面向移动平台的深度学习复杂场景目标识别应用[J].陕西师范大学学报(自然科学版), 2019, 47(5): 10-15. DOI:10.15983/j.cnki.jsnu.2019.05.152. [7] 陈晓,荆茹韵.单图像超分辨率方法综述[J].电子测量技术, 2022, 45(9): 104-112. DOI:10.19651/j.cnki.emt.2208826. [8] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Trans Acoust Speech Signal Process, 1981, 29(6): 1153-1160. DOI:10.1109/TASSP.1981.1163711. [9] DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38(2): 295-307. [10] DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[M] //Computer Vision-ECCV 2016, Cham: Springer International Publishing, 2016: 391-407. DOI:10.1007/978-3-319-46475-6_25. [11] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, USA, IEEE, 2016: 1646-1654. DOI:10.1109/CVPR.2016.182. [12] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, USA, IEEE, 2016: 1637-1645. DOI:10.1109/CVPR.2016.181. [13] TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, USA, IEEE, 2017: 2790-2798. DOI:10.1109/CVPR.2017.298. [14] LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks[J]. IEEE Trans Pattern Anal Mach Intell, 2019, 41(11): 2599-2613. DOI:10.1109/TPAMI.2018.2865304. [15] CHU X J, CHEN L Y, YU W Q. NAFSSR: stereo image super-resolution using NAFNet[C] //2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), New Orleans, USA, IEEE, 2022: 1238-1247. DOI:10.1109/CVPRW56347.2022.00130. [16] QIU D F, ZHENG L X, ZHU J Q, et al. Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021, 116: 200-208. DOI:10.1016/j.future.2020.11.001. [17] DU Y B, JIA R S, CUI Z, et al. X-ray image super-resolution reconstruction based on a multiple distillation feedback network[J]. Applied Intelligence, 2021, 51(7): 5081-5094. DOI:10.1007/s10489-020-02123-2. [18] CHEN Y H, ZHENG Q Y, CHEN J S. Double paths network with residual information distillation for improving lung CT image super resolution[J]. Biomed Signal Process Contr, 2022, 73: 103412. DOI:10.1016/j.bspc.2021.103412. [19] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, USA, IEEE, 2016: 1874-1883. DOI:10.1109/CVPR.2016.207. [20] 杨昆,原嘉成,高聪,等.基于改进的 Faster R-CNN 的息肉目标检测和分类方法[J].河北大学学报(自然科学版), 2023, 43(1): 103. DOI: 10.3969/j.issn.1000-1565.2023.01.015. [21] AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C] // Computer Vision-ECCV 2018, Cham: Springer International Publishing, 2018: 256-272. DOI:10.1007/978-3-030-01249-6_16. [22] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, IEEE, 2018: 2472-2481. DOI:10.1109/CVPR.2018.00262. [23] PENG C M, SHU P, HUANG X Y, et al. LCRCA: image super-resolution using lightweight concatenated residual channel attention networks[J]. ApplIntell, 2022, 52(9): 10045-10059. DOI:10.1007/s10489-021-02891-5. [24] LI X, WANG W H, HU X L, et al. Selective kernel networks[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, IEEE, 2019: 510-519. DOI:10.1109/cvpr.2019.00060. [25] WANG X S, PENG Y F, LU L, et al. ChestX-Ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, USA, IEEE, 2017: 3462-3471. DOI:10.1109/CVPR.2017.369. [26] YUAN F, HUANG L F, YAO Y. An improved PSNR algorithm for objective video quality evaluation[C] //2007 Chinese Control Conference, Zhangjiajie, China, IEEE, 2007: 376-380. DOI:10.1109/CHICC.2006.4347144. [27] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612. DOI:10.1109/TIP.2003.819861. [28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] //Computer Vision – ECCV 2018, ACM, 2018: 3-19. DOI:10.1007/978-3-030-01234-2_1. [29] ZHAO H Y, KONG X T, HE J W, et al. Efficient image super-resolution using pixel attention[M] //Computer Vision-ECCV 2020 Workshops, Cham: Springer International Publishing, 2020: 56-72. DOI:10.1007/978-3-030-67070-2_3. [30] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017.abs/1707.02921:1132-1140.DOI:10.1109/CUPRW.2017.151. [31] HUI Z, GAO X, YANG Y, et al. Lightweight image super-resolution with information multi-distillation net-work[C] //Proceedings of the 27th ACM International Conference on Multimedia,2019,abs/1909.11856:2024-2032.DOI: 10.1145/3343031.3351084. ( |