河北大学学报(自然科学版) ›› 2026, Vol. 46 ›› Issue (1): 104-112.DOI: 10.3969/j.issn.1000-1565.2026.01.011

• • 上一篇    

基于关系一致性的多分支对比学习算法

冯慧敏,吕巧莉,陈俊芬   

  • 收稿日期:2024-08-06 发布日期:2026-01-16
  • 通讯作者: 陈俊芬(1976—)
  • 作者简介:冯慧敏(1982—),女,河北大学副教授,主要从事模糊积分、机器学习等方向研究.E-mail: hmfeng@hbu.edu.cn
  • 基金资助:
    河北省社会科学基金项目(HB23GL019);河北省自然科学基金项目(F2022511001)

Relationship consistency based multi-branch contrastive learning algorithm

FENG Huimin, LYU Qiaoli, CHEN Junfen   

  1. College of Mathematics and Information Science, Hebei University, Baoding 071002, China
  • Received:2024-08-06 Published:2026-01-16

摘要: 传统对比学习算法进行实例判别时容易引入虚假负样本,导致模型收敛于次优解,影响下游任务性能.为此,提出一种基于关系一致性的多分支对比学习算法.该算法在分支网络中挖掘近邻集,提供语义一致的正样本,避免产生假的负样本.结合数据增强的多分支网络,最小化KL散度拉近语义一致性的正样本推开负样本,提升网络的特征表达能力.不同分支的温度控制输出分布的平滑性,保证特征表示的真实可靠性.最后在5个数据集上测试所提算法,并与其他先进方法进行对比,均获得令人满意的结果.

关键词: 对比学习, 关系一致性, 特征表示, 假负样本对, 数据增强

Abstract: Traditional contrastive learning algorithms have relied on instance discrimination, which is easy to introduce false negative samples, resulting in algorithm converges to suboptimal solutions and degenerating the performance of downstream tasks. To address this issue, this paper proposes a multi-branch contrastive learning algorithm based on relationship consistency. This algorithm incorporates a nearest neighbor set into the branch network, providing positive samples with their semantic consistency and avoiding false negative samples. Combined with multi-branch training using data augmentation, it minimizes KL divergence to pull positive samples with semantic consistency together and push away negative samples, which enhances the representation ability of network. The temperature parameters in different branches control the smoothness of the sharpen distribution, ensuring the reliability of feature representations. Finally, the method is evaluated on five public datasets and compared with state-of-the-art contrastive learning methods, all achieving satisfactory results.

Key words: contrastive learning, relationship consistency, feature representation, false negative sample, data augmentation

中图分类号: