[1] NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles[C] //European Conference on Computer Vision. Cham: Springer, 2016: 69-84.DOI: 10.1007/978-3-319-46466-4_5. [2] DOERSCH C, GUPTA A, EFROS A A. Unsupervised visual representation learning by context prediction[C] //2015 IEEE International Conference on Computer Vision(ICCV), Santiago, Chile, IEEE, 2015: 1422-1430. DOI: 10.1109/ ICCV.2015.167. [3] CHEN J, SUN L,XIE B. LSPC: Exploring contrastive clustering based on local semantic information and prototype[J]. Inf Syst, 2024, 121:102336. DOI:10.1016/j.is.2023.102336. [4] WANG W, CHEN J, ZHANG X, et al. Combining core points and cluster-ievel semantic similarity for self-supervised clustering[J]. Int J Mach Learn and Cybern,2024,15(8):3127-3142.DOI:10.1007/s13042-023-02084-1. [5] 赵宇,舒巧媛.基于渐进式混合对比学习的无监督领域自适应行人再识别[J].电子学报,2025,53(6):1829-1846. [6] 张北辰,李亮,查正军,等.基于跨模态对比学习的视觉问答主动学习方法[J].计算机学报, 2022,45: 1730-1745. [7] 吴冠荣,李元祥,王艺霖,等.基于对比学习的小样本金属表面损伤分类[J].计算机工程, 2024, 50(3):1-12. DOI: 10. 19678/j.issn.1000-3428.0067599. [8] HU J, HU M, WU Y, et al. A lightweight single-view contrastive learning hypergraph neural network for food-microbe-disease association prediction[J]. BMC Bioinformatics, 2025, 26(1):273. DOI:10.1186/s12859-025-06283-1. [9] 吴晗飞,俸彬,李梦华,等.InSAR时序形变数据的自监督对比学习聚类方法[J].遥感学报,2025,29(7):2442-2456. DOI:10.11834/jrs.20254393. [10] YU S, WANG H, HUA M, et al. Sparse graph cascade multi-kernel fusion contrastive learning for microbe-disease association prediction[J]. Expert Syst Appl, 2024, 252(PartA):124092. DOI:10.1016/j.eswa.2024.124092. [11] WANG Y, ZHANG J, WANG Y. Do generated data always help contrastive learning?[C] //International Conference on Learning Representations(ICLR 2024), Vienna, Austria, 2024,1-19. [12] WANG Y, ZHANG Q, GUO Y, et al.Non-negative contrastive learning[C] //International Conference on Learning Representations(ICLR 2024), Vienna, Austria, 2024,1-22. [13] CUI J, WEN H, WANG Y. An augmentation-aware theory for self-supervised contrastive learning[C] //Proceedings of the 42nd International Conference on Machine Learning(ICML), 2025. [14] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C] // the 37th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020: 1597-1607. [15] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle, WA, USA. IEEE, 2020: 9726- 9735. DOI: 10.1109/CVPR42600.2020.00975. [16] CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OL]. 2020: arXiv: 2003.04297. http://arxiv.org/abs/2003.04297. [17] GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent: a new approach to self-supervised Learning[C] //Advances in neural information processing systems, 2020, 33: 21271-21284. [18] CHEN X L, HE K M. Exploring simple Siamese representation learning[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville, TN, USA. IEEE, 2021: 15745-15753. DOI: 10.1109/ CVPR46437.2021.01549. [19] WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C] // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 3733-3742. DOI: 10.1109/CVPR.2018.00393. [20] ZHENG M K, YOU S, WANG F, et al. ReSSL: Relational self-supervised learning with weak augmentation[C] // Advances in Neural Information Processing Systems, 2021, 34: 2543-2555. [21] DWIBEDI D, AYTAR Y, TOMPSON J, et al. With a little help from my friends: nearest-neighbor contrastive learning of visual representations[C] //2021 IEEE/CVF International Conference on Computer Vision(ICCV), Montreal, QC, Canada, IEEE, 2021: 9568-9577. DOI: 10.1109/ICCV48922.2021.00945. [22] VAN DEN OORD A, LI Y Z, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. 2018: arXiv: 1807.03748. http://arxiv.org/abs/1807.03748. [23] COATES A, NG A, LEE H. An analysis of single-layer networks in unsupervised feature learning[C] // Artificial Intelligence and Statistics Conference, 2011: 215-223. [24] DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C] //2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA. IEEE, 2009: 248-255. DOI: 10.1109/CVPR. 2009.5206848. [25] ZBONTAR J, JING L, MISRA I, et al. Barlow twins: Self-supervised learning via redundancy reduction [C] //International conference on machine learning, ICML, 2021: 12310-12320. [26] YEH C H, HONG C Y, HSU Y C, et al. Decoupled contrastive learning[C] // 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 668-684. DOI: 10.1007/978-3-031-19809-0_38. [27] FENG C, PATRAS I. Adaptive soft contrastive learning[C] //2022 26th International Conference on Pattern Recognition(ICPR), Montreal, QC, Canada, IEEE, 2022: 2721-2727. DOI: 10.1109/ICPR56361.2022.9956660. ( |