河北大学学报(自然科学版) ›› 2004, Vol. 24 ›› Issue (2): 126-129.DOI: 10.3969/j.issn.1000-1565.2004.02.004

• • 上一篇    下一篇

一致凸Banach空间(L-α)一致李普希兹渐进非扩张映射的不动点迭代问题

王娴,何震   

  1. 河北大学,数学与计算机学院,河北,保定,071002
  • 出版日期:2004-03-25 发布日期:2004-03-25

Fixed-point Iteration for (L - α) Uniform Lipschitz Asymptotically Nonexpansive Mapping of Uniform Convex Banach Space

  • Online:2004-03-25 Published:2004-03-25

摘要: Xu和Norr已经证明了建立在一致凸Banach空间的一个非空有界闭凸子集上的渐进非扩张映射的三步迭代的收敛定理问题.引入(L-α)一致李普希兹的概念,然后在一些已有结果的基础上,证明一致凸Banach空间的紧子集上的(L-α)一致李普希兹渐进非扩张映射的三步迭代序列的收敛问题.这个结论是对Xu和Noor的相应结果的推广.

关键词: 不动点, 三步迭代, 渐进非扩张映射, (L-α)一致李普希兹, 一致凸Banach空间, 紧子集

Abstract: Xu and Noor had proved the theorem on convergence of three-step iterations for asymptotically nonexpansive mapping on nonempty closed, bounded, and convex subset of uniformly convex Banach space. Based on some results given by K Tan and H K Xu[1] proved, the convergence of three-step iterations of (L-α) uniformly Lipschitz asymptotically nonexpansive mapping on a compact subset of a uniform convex Banach space had proved. The results presented extended the corresponding of Xu and Noor[5].

Key words: fixed point, three-step iterations, asymptotically nonexpansive mapping, (L-α) uniform Lipschitz, uniformly convex Banach space, compact subset

中图分类号: