河北大学学报(自然科学版) ›› 2020, Vol. 40 ›› Issue (5): 543-551.DOI: 10.3969/j.issn.1000-1565.2020.05.013

• • 上一篇    下一篇

改进的PSO优化SVM的病理图像分类算法

董斌1,王云涛2,贾立男2,王娅南3   

  • 收稿日期:2019-11-06 出版日期:2020-09-25 发布日期:2020-09-25
  • 作者简介:董斌(1980—),男,河北唐山人,河北大学附属医院高级工程师,博士,主要从事生物医学相关方向研究. E-mail:dongbin@hbu.edu.cn
  • 基金资助:
    河北省自然科学基金资助项目(F2017201192);河北省医学科学研究重点课题(ZL20140223)

Pathological image classification algorithm by improved PSO-optimized SVM

DONG Bin1,WANG Yuntao2,JIA Linan2,WANG Yanan3   

  1. 1. Development and Planning Office, Affiliated Hospital of Hebei University, Baoding 071002, China; 2.School of Electronic Information Engineering, Hebei University, Baoding 071002, China; 3.Department of Pathology, Affiliated Hospital of Hebei University, Baoding 071002, China
  • Received:2019-11-06 Online:2020-09-25 Published:2020-09-25

摘要: 为了提高医学病理图像分类的准确率,提出了一种带有粒子位置权重和粒子之间相关度函数的PSO(particle swarm optimization)参数寻优算法.首先,在经典PSO算法的基础上提出了一种基于适应性原则的位置更新策略.然后,在粒子进行参数寻优的过程中,设计了一个增加粒子之间相关性的函数.该算法可以在不考虑速度影响的情况下进行参数最优解的搜索.最后,用经过PSO优化的支持向量机(SVM)算法分类检测病理图像.实验结果表明,该算法的分类准确率达到了98.5%,较高于另外几种算法.分类检测结果符合临床诊断结果,满足医学研究要求.

关键词: 支持向量机, 参数优化, 病理图像, 图像分类

Abstract: In order to improve the accuracy of medical pathological image classification, a PSO parameter optimization algorithm with adaptive iterative optimization function is proposed.First, a position updating strategy based on the adaptive principle is proposed on the basis of the classical PSO algorithm.Then, an adaptive iterative optimization function is designed in the process of particle parameter optimization.The algorithm can search for optimal solution without considering the influence of speed.Finally, the PSO optimized support vector machine algorithm is used to classify and detect pathological images.The experimental results show that the classification accuracy of the algorithm is 98.5%, which is higher than that of the other two algorithms.The results of classified detection are in accordance with the results of clinical diagnosis and meet the requirements of medical research.

Key words: support vector machine, parameter optimization, pathological image, image classification

中图分类号: