[1] MA Z H, DONG W Y, HOU J H, et al. Dendritic host materials with non-conjugated adamantane cores for efficient solution-processed blue thermally activated delayed fluorescence OLEDs[J]. Journal Material Chemistry C, 2019, 7(38):11845-11850. DOI: 10.1039/c9tc04143e. [2] SHAO S Y, HU J, WANG X D, et al. Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect[J]. Journal of the American Chemical Society, 2017, 139(49): 17739-17742. DOI: 10.1021/jacs.7b10257. [3] HU J, LI Q, WANG X D, et al. Developing through-space charge transfer polymers as a general approach to realize full-color and white emission with thermally activated delayed fluorescence[J]. Angewandte Chemie International Edition, 2019, 58(25): 8405-8409. DOI: 10.1002/anie.201902264. [4] KIM K H, MOON C K, LEE J H, et al. Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments[J]. Advanced Materials, 2014, 26(23): 3844-3847. DOI: 10.1002/adma.201305733. [5] LEUGN M Y, TANG M C, CHEUNG W L, et al. Thermally stimulated delayed phosphorescence(TSDP)-based gold(Ⅲ)complexes of tridentate pyrazine-containing pincer ligand with wide emission color tunability and their application in organic light-emitting devices[J]. Journal of the American Chemical Society, 2020, 142(5): 2448-2459. DOI: 10.1021/jacs.9b12136. [6] SUN H, TAN X, SANG S L, et al. A novel design strategy for deeper blue and more stable thermally activated delayed uorescent emitters[J]. Organic Electronics, 2020, 78: 105610. DOI: 10.1016/j.orgel.2019.105610. [7] WANG X, ZHONG Z M, ZHAO S, et al. An efficient blue emitter based on a naphthalene indenofluorene core[J]. Organic Electronics, 2018, 55: 157-164. DOI: 10.1016/j.orgel.2018.01.024. [8] PENG F, ZHONG Z M, MA Y W, et al. Achieving highly efficient blue light-emitting polymers by incorporating a styrylarylene amine unit[J]. Journal Material Chemistry C, 2018, 6(45): 12355-12363. DOI: 10.1039/c8tc04411b. [9] ZHANG T, YE J Y, LUO A S, et al. Efficient deep blue emitter based on carbazole-pyrene hybrid for non-doped electroluminescent device[J]. Optical Materials, 2020, 100: 109632. DOI: 10.1016/j.optmat.2019.109632. [10] LIU J C, ZHONG X M, XU Y N, et al. Green synthesis of 8-hydroxyquinoline barium as visible-light-excited luminescent material using mechanochemical activation method[J]. Global Challenges, 2019, 3(12): 1900052. DOI: 10.1002/gch2.201970121. [11] SIODEK A, ZYCH D, MARON A, et al. Fluorene vs carbazole substituent at quinoline core toward organic electronics[J]. Dyes and Pigments, 2019, 166: 98-106. DOI:10.1016/j.dyepig.2019.03.032. [12] KING A J, ZATSIKHA Y V, BLESSENER T, et al. Ultrafast electron-transfer in a fully conjugated coumarin-ferrocene donor-acceptor dyads[J]. Journal of Organometallic Chemistry, 2019, 887: 86-97. DOI: 10.1016/j.jorganchem.2019.03.004. [13] BU M J, LU G P, CAI C. Visible-light photoredox catalyzed cyclization of aryl alkynoates for the synthesis of trifluoromethylated coumarins[J]. Catalysis Communications, 2018, 114: 70-74. DOI: 10.1016/j.catcom.2018.06.009. [14] ARAFA R K, HEGAZY G H, PIAZZA G A, et al. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents[J]. European Journal of Medicinal Chemistry, 2013, 63: 826-832. DOI: 10.1016/j.ejmech.2013.03.008. [15] ISLAM A S M, BHOWMICK R, MOHAMMAD H, et al. A novel 8-hydroxyquinoline-pyazole based highly sensitive and selective Al(Ⅲ)sensor in purely aqueous medium with intracellular application: experimental and computational studies[J]. New Journal of Chemistry, 2016, 40(5): 4710-4719. DOI: 10.1039/c5nj03153b. ( |