Journal of Hebei University(Natural Science Edition) ›› 2021, Vol. 41 ›› Issue (5): 535-544.DOI: 10.3969/j.issn.1000-1565.2021.05.010
Previous Articles Next Articles
DUAN Xinrui, MENG Tianjiao
Received:
2021-05-10
Online:
2021-09-25
Published:
2021-09-28
CLC Number:
DUAN Xinrui, MENG Tianjiao. Research progress in design of the organic fluorescence probes and its application for the detection of tumor biomarker[J]. Journal of Hebei University(Natural Science Edition), 2021, 41(5): 535-544.
Add to citation manager EndNote|Ris|BibTeX
URL: //xbzrb.hbu.edu.cn/EN/10.3969/j.issn.1000-1565.2021.05.010
[1] SUNG H, FERLAY J, SIEGEL RL,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021, 71(3): 209-249. DOI: 10.3322/caac.21660. [2] LAM C G, HOWARD S C, BOUFFET E,et al.Science and health for all children with cancer[J]. Science, 2019,363:1182-1186. DOI:10.1126/science.aaw4892. [3] LIU H W, LI K, HU X X, et al. In situ localization of enzyme activity in live cells by a molecular probe releasing a precipitating fluorochrome[J]. Angew Chem, 2017, 129: 11950-11954.DOI: 10.1002/ange.201705747. [4] CHEN K, SHI B F. ChemInform abstract: sulfonamide-promoted palladium(Ⅱ)-catalyzed alkylation of unactivated methylene C(sp3)-H bonds with alkyl iodides[J]. ChemInform, 2015, 46(15): 12144-12148.DOI: 10.1002/chin.201515052. [5] SHI H, NA Z, DAN D, et al. Fluorescent light-up probe with aggregation-induced emission characteristics for in vivo imaging of cell apoptosis[J].Org Biomol Chem, 2013, 11, 7289-7296.DOI: 10.1039/c3ob41572d. [6] SROOR H,HUANG Y W,SEPHTON B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nat Photonics, 2020,14(8): 1-6.DOI:10.1038/s41566-020-0623-z. [7] CAO D, LIU Z, VERWILST P, et al. Correction to coumarin-based small-molecule fluorescent chemosensors[J].Chem Rev, 2019, 119: 10403-10519.DOI: 10.1021/acs.chemrev.9b00640. [8] ZHANG R, YONG J,YUAN J, et al. Recent advances in the development of responsive probes for selective detection of cysteine[J]. Coord Chem Rev,2020, 408: 213182.DOI: 10.1016/j.ccr.2020.213182. [9] WU L, SEDGWICK A C, SUN X, et al. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species[J]. Acc Chem Res,2019, 52:2582-2597.DOI: 10.1021/acs.accounts.9b00302. [10] YUE Y, HUO F, YIN C.The chronological evolution of small organic molecular fluorescent probes for thiols[J]. Chem Sci, 2021, 12:1220-1226.DOI: 10.1039/D0SC04960C. [11] XIAO H, LI P, TANG B.Small molecular fluorescent probes for imaging of viscosity in living biosystems[J].Chem Eur J, 2021, 27: 6880-6898.DOI: 10.1002/chem.202004888. [12] CHEN S Y, LI Z, LI K, et al.Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions[J].Coord Chem Rev, 2021, 429:213691.DOI: 10.1016/j.ccr.2020.213691. [13] ZHANG Y,LI S, ZHANG H, et al.Design and application of receptor-targeted fluorescent probes based on small molecular fluorescent dyes[J].Bioconjug Chem, 2021, 32:4-24.DOI: 10.1021/acs.bioconjchem.0c00606. [14] PAN S J, PEI L J, ZHANG A, et al. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor[J]. Biomaterials, 2020, 230: 119606. DOI:10.1016/j.biomaterials.2019.119606. [15] BRAY F FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68: 394-424. DOI:10.3322/caac.21492. [16] SADIGHBAYAN D, SADIGHBAYAN K, TOHID-KIA M R, et al. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis:Recent progress[J].Trac Trends Anal Chem,2019,118:73-88.DOI:10.1016/j.trac.2019.05.014. [17] QIU F, GAN X Y, JIANG B Y, et at. Electrode immobilization-free and sensitive electrochemical sensing of thrombin via magnetic nanoparticle-decorated DNA polymers[J].Sens Actuat B Chem,2021,331:129395.DOI:10.1016/j.snb.2020.129395. [18] MENG T, JIA H, AN S, et al. Pd nanoparticles-DNA layered nanoreticulation biosensor based on target-catalytic hairpin assembly for ultrasensitive and selective biosensing of microRNA-21[J]. Sensor Actuator B Chem, 2020,232:128621. [19] WANG L, MENG T J, ZHAO D, et al. An enzyme-free electrochemical biosensor based on well monodisperse Au nanorods for ultra-sensitive detection of telomerase activity[J]. Biosens Bioelectron, 2020, 148: 111834. DOI:10.1016/j.bios.2019.111834. [20] LI F L, CHEN Y P, LIN R X, et al. Integration of fluorescent polydopamine nanoparticles on protamine for simple and sensitive trypsin assay[J]. Anal Chimica Acta, 2021, 1148: 338201. DOI:10.1016/j.aca.2021.338201. [21] MENG X D, ZHANG K, YANG F, et al. Biodegradable metal-organic frameworks power DNAzyme for in vivo temporal-spatial control fluorescence imaging of aberrant MicroRNA and hypoxic tumor[J]. Anal Chem, 2020, 92(12): 8333-8339. DOI:10.1021/acs.analchem.0c00782. [22] ZHANG X, AN L, TIAN Q, et al. Tumor microenvironment-activated NIR-Ⅱ reagents for tumor imaging and therapy[J]. J Mater Chem B, 2020, 8(22): 4738-4747. DOI:10.1039/d0tb00030b. [23] TIAN X G, TIAN Z H, WANG Y, et al. A highly selective fluorescent probe for detecting glutathione transferases to reveal anticancer-activity sensitivity of cisplatin in cancer cells and tumor tissues[J]. Sens Actuat B: Chem, 2018, 277: 423-430. DOI:10.1016/j.snb.2018.09.045. [24] LIU Y Q, XIONG E H, LI X Y, et al. Sensitive electrochemical assay of alkaline phosphatase activity based on TdT-mediated hemin/G-quadruplex DNAzyme nanowires for signal amplification[J]. Biosens Bioelectron, 2017, 87: 970-975. DOI:10.1016/j.bios.2016.09.069. [25] WANG S, HUANG M, HUA J, et al. Digital counting of single semiconducting polymer nanoparticles for the detection of alkaline phosphatase[J]. Nanoscale, 2021, 13(9): 4946-4955. DOI:10.1039/d0nr09232k. [26] MWILU S K, OKELLO V A, OSONGA F J, et al. A new substrate for alkaline phosphatase based on quercetin pentaphosphate[J]. Analyst, 2014, 139(21): 5472-5481. DOI:10.1039/c4an00931b. [27] QIN W J, XU C C, ZHAO Y F, et al. Recent progress in small molecule fluorescent probes for nitroreductase[J]. Chin Chem Lett, 2018, 29(10): 1451-1455. DOI:10.1016/j.cclet.2018.04.007. [28] JIE Z, QI G H, XU C, et al. Enzymatic preparation of plasmonic-fluorescent quantum dot-gold hybrid nanoprobes for sensitive detection of glucose and alkaline phosphatase and dual-modality cell imaging[J]. Anal Chem, 2019, 91(21): 14074-14079. DOI:10.1021/acs.analchem.9b03818. [29] WANG L, MENG T J, YU G S, et al. A label-free electrochemical biosensor for ultra-sensitively detecting telomerase activity based on the enhanced catalytic currents of acetaminophen catalyzed by Au nanorods[J]. Biosens Bioelectron, 2019, 124/125: 53-58. DOI:10.1016/j.bios.2018.09.098. [30] GAN X Y, QIU F, JIANG B Y, et al. Convenient and highly sensitive electrochemical biosensor for monitoring acid phosphatase activity[J]. Sens Actuat B: Chem, 2021, 332: 129483. DOI:10.1016/j.snb.2021.129483. [31] LI Y Y, XUE C H, FANG Z J, et al. In vivo visualization of γ-glutamyl transpeptidase activity with an activatable self-immobilizing near-infrared probe[J]. Anal Chem, 2020, 92(22): 15017-15024. DOI:10.1021/acs.analchem.0c02954. [32] LIU S F, WEI W J, SUN X Y, et al. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification[J]. Biosens Bioelectron, 2016, 83: 33-38. DOI:10.1016/j.bios.2016.04.026. [33] XU A G, CHAO L, XIAO H B, et al. Ultrasensitive electrochemical sensing of Hg2+ based on thymine-Hg2+-thymine interaction and signal amplification of alkaline phosphatase catalyzed silver deposition[J]. Biosens Bioelectron, 2018, 104: 95-101. DOI:10.1016/j.bios.2018.01.005. [34] SAPPIA L, FELICE B, SANCHEZ M A, et al. Electrochemical sensor for alkaline phosphatase as biomarker for clinical and in vitro applications[J]. Sens Actuat B: Chem, 2019, 281: 221-228. DOI:10.1016/j.snb.2018.10.105. [35] YU L, FENG L X, XIONG L, et al. Rational design of dual-emission lanthanide metal-organic framework for visual alkaline phosphatase activity assay[J]. ACS Appl Mater Interfaces, 2021, 13(10): 11646-11656. DOI:10.1021/acsami.1c00134. [36] WANG K, WANG W, ZHANG X Y, et al. Fluorescent probes for the detection of alkaline phosphatase in biological systems: Recent advances and future prospects[J]. Trac Trends Anal Chem, 2021, 136: 116189. DOI:10.1016/j.trac.2021.116189. [37] DILLON K M, MORRISON H A, POWELL C R, et al. Targeted delivery of persulfides to the gut: effects on the microbiome[J]. Angew Chem Int Ed, 2021, 60(11): 6061-6067. DOI:10.1002/anie.202014052. [38] KARAN S N, CHO M Y, LEE H, et al. Near-infrared fluorescent probe activated by nitroreductase for in vitro and in vivo hypoxic tumor detection[J]. J Med Chem, 2021, 64(6): 2971-2981. DOI:10.1021/acs.jmedchem.0c02162. [39] SARKAR S, LEE H, RYU H G, et al. A study on hypoxia susceptibility of organ tissues by fluorescence imaging with a ratiometric nitroreductase probe[J]. ACS Sens, 2021, 6(1): 148-155. DOI:10.1021/acssensors.0c01989. [40] LIN Y, SUN L H, ZENG F, et al. An unsymmetrical squaraine-based activatable probe for imaging lymphatic metastasis by responding to tumor hypoxia with MSOT and aggregation-enhanced fluorescent imaging[J]. Chem A Eur J, 2019, 25(72): 16740-16747. DOI:10.1002/chem.201904675. [41] VINEGONI C, FERUGLIO P F, GRYCZYNSKI I, et al. Fluorescence anisotropy imaging in drug discovery[J]. Adv Drug Deliv Rev, 2019, 151/152: 262-288. DOI:10.1016/j.addr.2018.01.019. [42] CAO X J, SUN Y, LU P, et al. Fluorescence imaging of intracellular nucleases-A review[J]. Anal Chimica Acta, 2020, 1137: 225-237. DOI:10.1016/j.aca.2020.08.013. [43] LI J, ZHANG Y, WANG P Z, et al. Reactive oxygen species, thiols and enzymes activable AIEgens from single fluorescence imaging to multifunctional theranostics[J]. Coord Chem Rev, 2021, 427: 213559. DOI:10.1016/j.ccr.2020.213559. [44] LIU C L, GAO X N, YUAN J L, et al. Advances in the development of fluorescence probes for cell plasma membrane imaging[J]. Trac Trends Anal Chem, 2020, 133: 116092. DOI:10.1016/j.trac.2020.116092. [45] ZHAO J H, CHEN J W, MA S N, et al. Recent developments in multimodality fluorescence imaging probes[J]. Acta Pharm Sin B, 2018, 8(3): 320-338. DOI:10.1016/j.apsb.2018.03.010. [46] ZHU H, HAMACHI I. Fluorescence imaging of drug target proteins using chemical probes[J]. J Pharm Anal, 2020, 10(5): 426-433. DOI:10.1016/j.jpha.2020.05.013. [47] KURBEGOVIC S, JUHL K, CHEN H, et al. Molecular targeted NIR-II probe for image-guided brain tumor surgery[J]. Bioconjugate Chem, 2018, 29(11): 3833-3840. DOI:10.1021/acs.bioconjchem.8b00669. [48] AN H W, HOU D, ZHENG R, et al. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma[J]. ACS Nano, 2020, 14(1): 927-936. DOI:10.1021/acsnano.9b08209. [49] LI H D, YAO Q C, SUN W, et al. Aminopeptidase N activatable fluorescent probe for tracking metastatic cancer and image-guided surgery via in situ spraying[J]. J Am Chem Soc, 2020, 142(13): 6381-6389. DOI:10.1021/jacs.0c01365. [50] NG H L, LIN M Z. Structure-guided wavelength tuning in far-red fluorescent proteins[J]. Curr Opin Struct Biol, 2016, 39: 124-133. DOI:10.1016/j.sbi.2016.07.010. [51] XU S N, HU H Y. Fluorogen-activating proteins: beyond classical fluorescent proteins[J]. Acta Pharm Sin B, 2018, 8(3): 339-348. DOI:10.1016/j.apsb.2018.02.001. [52] GUO J, GUO M Y, WANG F H, et al. Graphdiyne: structure of fluorescent quantum dots[J]. Angewandte Chemie Int Ed, 2020, 59(38): 16712-16716. DOI:10.1002/anie.202006891. [53] WANG L, LI W T, YIN L Q, et al. Full-color fluorescent carbon quantum dots[J]. Sci Adv, 2020, 6(40): eabb6772. DOI:10.1126/sciadv.abb6772. [54] LI X C, ZHAO Y P, YIN J L, et al. Organic fluorescent probes for detecting mitochondrial membrane potential[J]. Coord Chem Rev, 2020, 420: 213419. DOI:10.1016/j.ccr.2020.213419. [55] TIAN X, MURFIN L C, WU L L, et al. Fluorescent small organic probes for biosensing[J]. Chem Sci, 2021, 12(10): 3406-3426. DOI:10.1039/d0sc06928k. [56] LI X C, LIANG X, YIN J L, et al. Organic fluorescent probes for monitoring autophagy in living cells[J]. Chem Soc Rev, 2021, 50(1): 102-119. DOI:10.1039/d0cs00896f. [57] WU X F, SHI W, LI X H, et al. Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes[J]. Acc Chem Res, 2019, 52(7): 1892-1904. DOI:10.1021/acs.accounts.9b00214. [58] HU D, ZOU L, LI B, et al. Photothermal killing of methicillin-resistant Staphylococcus aureus by bacteria-targeted polydopamine nanoparticles with nano-localized hyperpyrexia[J]. ACS Biomater Sci Eng, 2019, 5(10): 5169-5179. DOI:10.1021/acsbiomaterials.9b01173. [59] WANG Z, CARNIATO F, XIE Y J, et al. High relaxivity gadolinium-polydopamine nanoparticles[J]. Small, 2017, 13(43): 1701830. DOI:10.1002/smll.201701830. [60] JIAN C E, YAN J X, ZHANG H, et al. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo[J]. Mol Cell Probes, 2021, 55: 101686. DOI:10.1016/j.mcp.2020.101686. [61] ZHU B B, TANG W, REN Y Q, et al. Chemiluminescence of conjugated-polymer nanoparticles by direct oxidation with hypochlorite[J]. Anal Chem, 2018, 90(22): 13714-13722. DOI:10.1021/acs.analchem.8b04109. [62] FAN M Y, ZHOU Y Y, GUO Y J, et al. Bright red fluorescent conjugated polymer nanoparticles with dibenzopyran as electron donor for cell imaging[J]. Anal Methods, 2017, 9(21): 3255-3259. DOI:10.1039/c7ay00585g. [63] JI Y Y, JONES C, BAEK Y, et al. Near-infrared fluorescence imaging in immunotherapy[J]. Adv Drug Deliv Rev, 2020, 167: 121-134. DOI:10.1016/j.addr.2020.06.012. [64] HUANG Y F, ZHANG Y B, HUO F J, et al. Design strategy and bioimaging of small organic molecule multicolor fluorescent probes[J]. Sci China Chem, 2020, 63(12): 1742-1755. DOI:10.1007/s11426-020-9855-3. [65] LIU Y T, LUO X F, LEE Y Y, et al. Investigating the metal-enhanced fluorescence on fluorescein by silica core-shell gold nanoparticles using time-resolved fluorescence spectroscopy[J]. Dyes Pigments, 2021, 190: 109263. DOI:10.1016/j.dyepig.2021.109263. [66] IWAKI H, KAMIYA M, KAWATANI M, et al. Fluorescence probes for imaging basic carboxypeptidase activity in living cells with high intracellular retention[J]. Anal Chem, 2021, 93(7): 3470-3476. DOI:10.1021/acs.analchem.0c04793. [67] HU S Q, JIANG H P, ZHU J Q, et al. Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives[J]. J Control Release, 2021, 330: 842-850. DOI:10.1016/j.jconrel.2020.10.057. [68] LIU C, JIAO X J, WANG Q, et al. A unique rectilinearly π-extended rhodamine dye with large Stokes shift and near-infrared fluorescence for bioimaging[J]. Chem Commun, 2017, 53(77): 10727-10730. DOI:10.1039/c7cc06220f. [69] TIAN X, KUMAWAT L K, BULL S D, et al. Coumarin-based fluorescent probe for the detection of glutathione and nitroreductase[J]. Tetrahedron, 2021, 82: 131890. DOI:10.1016/j.tet.2020.131890. [70] YOON S A, CHUN J, KANG C, et al. Self-calibrating bipartite fluorescent sensor for nitroreductase activity and its application to cancer and hypoxic cells[J]. ACS Appl Bio Mater, 2021, 4(3): 2052-2057. DOI:10.1021/acsabm.0c01085. [71] YU X Y, WANG K N, XING M M, et al. Structurally regular arrangement induced fluorescence enhancement and specific recognition for glutathione of a pyrene chalcone derivative[J]. Anal Chimica Acta, 2019, 1082: 146-151. DOI:10.1016/j.aca.2019.07.052. [72] XING M M, WANG K N, WU X W, et al. A coumarin chalcone ratiometric fluorescent probe for hydrazine based on deprotection, addition and subsequent cyclization mechanism[J]. Chem Commun Camb Engl, 2019, 55(99): 14980-14983. DOI:10.1039/c9cc08174g. [73] ZHU K N, QIN T Y, ZHAO C, et al. A novel fluorescent turn-on probe for highly selective detection of nitroreductase in tumor cells[J]. Sens Actuat B: Chem, 2018, 276: 397-403. DOI:10.1016/j.snb.2018.08.134. [74] XU F Y, FAN M Y, KANG S S, et al. A genetically encoded fluorescent biosensor for detecting nitroreductase activity in living cancer cells[J]. Anal Chimica Acta, 2019, 1088: 131-136. DOI:10.1016/j.aca.2019.08.058. [75] YOON S A, CHUN J, KANG C, et al. Self-calibrating bipartite fluorescent sensor for nitroreductase activity and its application to cancer and hypoxic cells[J]. ACS Appl Bio Mater, 2021, 4(3): 2052-2057. DOI:10.1021/acsabm.0c01085. [76] WÜRTHNER F. Aggregation-induced emission(AIE): a historical perspective[J]. Angew Chem Int Ed, 2020, 59(34): 14192-14196. DOI:10.1002/anie.202007525. [77] WANG Y F, ZHANG Y X, WANG J J, et al. Aggregation-induced emission(AIE)fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems[J]. Adv Drug Deliv Rev, 2019, 143: 161-176. DOI:10.1016/j.addr.2018.12.004. [78] LIANG J, KWOK R T, SHI H, et al. Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study[J]. ACS Appl Mater Interfaces, 2013, 5(17): 8784-8789. DOI:10.1021/am4026517. [79] SHEN X, LIANG F, ZHANG G, et al. A new continuous fluorometric assay for acetylcholinesterase activity and inhibitor screening with emissive core-shell silica particles containing tetraphenylethylene fluorophore[J]. Analyst, 2012, 137(9): 2119-2123. DOI:10.1039/c2an35154d. [80] GU X G, ZHANG G X, WANG Z, et al. A new fluorometric turn-on assay for alkaline phosphatase and inhibitor screening based on aggregation and deaggregation of tetraphenylethylene molecules[J]. Analyst, 2013, 138(8): 2427. DOI:10.1039/c3an36784c. [81] ZHANG W J, YANG H X, LI N, et al. A sensitive fluorescent probe for alkaline phosphatase and an activity assay based on the aggregation-induced emission effect[J]. RSC Adv, 2018, 8(27): 14995-15000. DOI:10.1039/c8ra01786g. [82] ZHAO M Y, LI B H, WU Y F, et al. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma[J]. Adv Mater, 2020, 32(28): 2001172. DOI:10.1002/adma.202001172. [83] OWENS E A, HENARY M, EL FAKHRI G, et al. Tissue-specific near-infrared fluorescence imaging[J]. Acc Chem Res, 2016, 49(9): 1731-1740. DOI:10.1021/acs.accounts.6b00239. [84] YOSHINO F, AMANO T, ZOU Y J, et al. Preferential tumor accumulation of polyglycerol functionalized nanodiamond conjugated with cyanine dye leading to near-infrared fluorescence in vivo tumor imaging[J]. Small, 2020, 16(28): 2003468. DOI:10.1002/smll.202003468. [85] ZHANG Y, LV T, ZHANG H, et al. Folate and heptamethine cyanine modified chitosan-based nanotheranostics for tumor targeted near-infrared fluorescence imaging and photodynamic therapy[J]. Biomacromolecules, 2017, 18(7): 2146-2160. DOI:10.1021/acs.biomac.7b00466. [86] LI S H, ZHOU S X, LI Y C, et al. Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy[J]. ACS Appl Mater Interfaces, 2017, 9(27): 22332-22341. DOI:10.1021/acsami.7b07267. [87] POTARA M, NAGY-SIMON T, FOCSAN M, et al. Folate-targeted Pluronic-chitosan nanocapsules loaded with IR780 for near-infrared fluorescence imaging and photothermal-photodynamic therapy of ovarian cancer[J]. Colloids Surf B: Biointerfaces, 2021, 203: 111755. DOI:10.1016/j.colsurfb.2021.111755. [88] LI S J, LI C Y, LI Y F, et al. Facile and sensitive near-infrared fluorescence probe for the detection of endogenous alkaline phosphatase activity in vivo[J]. Anal Chem, 2017, 89(12): 6854-6860. DOI:10.1021/acs.analchem.7b01351. [89] TAN Y, ZHANG L, MAN K H, et al. Reaction-based off-on near-infrared fluorescent probe for imaging alkaline phosphatase activity in living cells and mice[J]. ACS Appl Mater Interfaces, 2017, 9(8): 6796-6803. DOI:10.1021/acsami.6b14176. [90] GAO Z W, SUN J Y, GAO M, et al. A unique off-on near-infrared cyanine-based probe for imaging of endogenous alkaline phosphatase activity in cells and in vivo[J]. Sens Actuat B: Chem, 2018, 265: 565-574. DOI:10.1016/j.snb.2018.03.078. [91] GAO X T, MA G C, JIANG C, et al. In vivo near-infrared fluorescence and photoacoustic dual-modal imaging of endogenous alkaline phosphatase[J]. Anal Chem, 2019, 91(11): 7112-7117. DOI:10.1021/acs.analchem.9b00109. [92] MENG X, ZHANG J, SUN Z, et al. Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy[J]. Theranostics, 2018, 8(21): 6025-6034. DOI:10.7150/thno.26607. [93] LI Y H, DENG Y, LIU J, et al. A near-infrared frequency upconversion probe for nitroreductase detection and hypoxia tumor in vivo imaging[J]. Sens Actuat B: Chem, 2019, 286: 337-345. DOI:10.1016/j.snb.2019.02.002. ( |
[1] | YIN Caixia, XIONG Kangming, HUO Fangjun. Application of 7-hydroxylcoumarin-aldehyde in the detection of hypochlorite [J]. Journal of Hebei University (Natural Science Edition), 2018, 38(1): 28-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||