[1] LI C Z, ZHAO X C, WANG A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemi Rev, 2015, 115(21): 11559-11624. DOI:10.1021/acs.chemrev.5b00155. [2] HA JEONGMYEONG, HWANG KYUNG-RAN, KIM YOUNGMIN, et al. Recent progress in the thermal and catalytic conversion of lignin[J]. Renew Sustain Energy Rev, 2019, 111: 422-441. DOI:10.1016/j.rser.2019.05.034. [3] JING Y X, GUO Y, XIA Q N, et al. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass[J]. Chem, 2019, 5(10): 2520-2546. DOI:10.1016/j.chempr.2019.05.022. [4] GUO H W, ZHANG B, QI Z J, et al. Valorization of lignin to simple phenolic compounds over tungsten carbide: impact of lignin structure[J]. ChemSusChem, 2017,10(3): 523-532. DOI:10.1002/cssc.201601326. [5] ABDELAZIZ OMAR Y, CLEMMENSEN IDA, MEIER SEBASTIAN, et al. On the oxidative valorization of lignin to high-value chemicals: a critical review of opportunities and challenges[J]. ChemSusChem, 2022,15(20): e202201232. DOI:10.1002/cssc.202201232. [6] YANG HUAMEI, APPARIA SRINIVAS, KUDO SHINJI, et al. Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin[J]. Ind Eng Chem Res, 2015, 54(27):6855-6864. DOI:10.1021/acs.iecr.5b01289. [7] YANG H M, APPARIA SRINIVAS, KUDO SHINJI, et al. Chemical structures and primary pyrolysis characteristics of lignins obtained from different preparation methods[J]. J Jpn Ins Energy, 2014, 93(10): 986-994. DOI:10.3775/jie.93.986. [8] ABDELAZIZ OMAR Y, HULTEBERG P CHRISTIAN. Lignin depolymerization under continuous-flow conditions: highlights of recent developments[J]. ChemSusChem, 2020, 13(17): 4382-4384. DOI:10.1002/cssc.202001225. [9] ZHU X Y, PENG C, CHEN H X, et al. Opportunities of ionic liquids for lignin utilization from biorefinery[J]. Chemistry Select, 2018, 3(27): 7945-7962. DOI:10.1002/slct.201801393. [10] GE M M, FANG T M, ZHOU G H, et al. Insight into the dual effect of water on lignin dissolution in ionic liquids[J]. Int J Biol Macromol, 2022, 205: 178-184. DOI:10.1016/j.ijbiomac.2022.02.079. [11] AZIZI DARIUSH, LARACHI FAICAL. Immiscible dual ionic liquid-ionic liquid mineral separation of rare-earth minerals[J]. Sep Purif Technol, 2018, 191: 340-353. DOI:10.1016/j.seppur.2017.09.061. [12] BELESOV ARTYOM V, LADESOV ANTON V, PIKOVSKOI I ILYA, et al. Characterization of ionic liquid lignins isolated from spruce wood with 1-butyl-3-methylimidazolium acetate and methyl sulfate and their binary mixtures with DMSO[J]. Molecules, 2020, 25(11): 25112479. DOI:10.3390/molecules25112479. [13] TINDALL GRAHAM W, CHONG JOSH, MIYASATO EVAN, et al. Fractionating and purifying softwood kraft lignin with aqueous renewable solvents: liquid-liquid equilibrium for the lignin-ethanol-water system[J]. ChemSusChem, 2020, 13(17): 4587-4594. DOI:10.1002/cssc.202000701. [14] RAWAT SHIVAM, KUMAR ADARSH, BHASKAR THALLADA, et al. Ionic liquids for separation of lignin and transformation into value-added chemicals[J]. Curr Opini Green Sustain Chem, 2022, 34: 100582. DOI:10.1016/j.cogsc.2021.100582 [15] YANG T, YANG J T, DENG X, et al. Modifying the electrocatalytic selectivity of oxidation reactions with ionic liquids[J]. Angew Chem Int Ed Engl, 2022, 61(29): e202202957. DOI:10.1002/anie.202202957. DOI:10.1002/anie.202202957. [16] LIU G Y, WANG Q, YANG D X, et al. Insights into the electrochemical degradation of phenolic lignin model compounds in a protic ionic liquid-water system[J]. Green Chem, 2021, 23(4): 1665-1677. DOI: 10.1039/d0gc03551c. [17] MELRO ELODIE, ALVES LUIS, ANTUNES FILIPE E, et al. A brief overview on lignin dissolution[J]. J Mol Liq, 2018, 265: 578-584. DOI: 10.1016/j.molliq.2018.06.021. [18] GRISHINA E P, RAMENSKAYA L M, GRUZDEV M S, et al. Water effect on physicochemical properties of 1-butyl-3-methylimidazolium based ionic liquids with inorganic anions[J]. J Mol Liq, 2013, 177: 267-272. DOI:10.1016/j.molliq.2012.10.023. [19] PU Y Q, JIANG N, RAGAUSKAS ARTHUR J. Ionic liquid as a green solvent for lignin[J]. J Wood Chem Technol, 2007, 27(1): 23-33. DOI:10.1080/02773810701282330. [20] WANG Y T, WEI L G, LI K L, et al. Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures[J]. Bioresource Technol, 2014, 170: 499-505. DOI:10.1016/j.biortech.2014.08.020. [21] MA Y C, ZHENG H D, ZHENG L L, et al. Rheological characterization of mixed aqueous solutions of enzymatic hydrolysis lignin and ionic liquid[J]. Chemistry Select, 2022, 7(21): e202200020. DOI: 10.1002/slct.202200020. [22] ZHANG Y Q, HE H Y, DONG K, et al. A DFT study on lignin dissolution in imidazolium-based ionic liquids[J]. RSC Adv, 2017, 7(21): 12670-12681. DOI:10.1039/C6RA27059J. [23] YANG H M, CHEN Z Q, LUO K, et al. Insight into the dissolution behaviour and rheological characterisation of lignin in 1-butyl-3-methylimidazole bisulphate-ethanol system[J]. Phy Chem Liq, 2023, 11:2289016. DOI: 10.1080/00319104.2023.2289016. [24] SHI J, BALAMURUGAN KANAGASABAI, PARTHASARATHI RAMAKRISHNAN, et al. Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent[J]. Green Chem, 2014,16(8): 3830-3840. DOI:10.1039/c4gc00373j. [25] YANG H M, JIANG J, ZHANG B Z, et al. Experimental study on pretreatment effects of [BMIM] HSO4/ethanol on thermal behaviors of cellulose[J]. RSC Adv, 2022, 12(17):10366-10373. DOI:10.1039/d2ra00876a. [26] WANG S R, RU B, DAI G X, et al. Mechanism study on the pyrolysis of a synthetic β-O-4 dimer as lignin model compound[J]. Proc Combust Inst, 2017, 36(2): 2225-2233. DOI:10.1016/j.proci.2016.07.129. [27] CHOI YONG, RAHUI SINGH, ZHANG JONG, et al. Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds[J]. Green Chem, 2016, 18: 1762-1773. DOI:10.1039/C5GC02268A. [28] ZHOU S, GARCIA-PEREZ MANUEL, PECHA BRENNAN, et al. Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood[J]. Energy Fuels, 2013, 27(3): 1428-1438. DOI:10.1021/ef3019832. [29] CHO JOUNGMO, CHU SHENG, DAUENHAUER PAUL J, et al. Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood[J]. Green Chem, 2012, 14: 428-439. DOI:10.1039/C1GC16222E. [30] HUANG J B, HE C, LIU C, et al. A computational study on thermal decomposition mechanism of β-1 linkage lignin dimer[J]. Comput Theor Chem, 2015, 1054: 80-87. DOI:10.1016/j.comptc.2014.12.007. [31] CAO X B, ZHANG J, CEN K H, et al. Investigation of the relevance between thermal degradation behavior and physicochemical property of cellulose under different torrefaction severities[J]. Biomass Bioenergy, 2021, 148: 106061. DOI:10.1016/j.biombioe.2021.106061. [32] JIANG L Q, LIN Q L, LIN Y, et al. Impact of ball-milling and ionic liquid pretreatments on pyrolysis kinetics and behaviors of crystalline cellulose[J]. Bioresour Technol, 2020, 305: 123044. DOI:10.1016/j.biortech.2020.123044. ( |