[1] WANG D C, CHEN S J, SUN X Z, et al. AFP-mask: anchor-free polyp instance segmentation in colonoscopy[J]. IEEE J Biomed Health Inform, 2022, 26(7): 2995-3006. DOI:10.1109/JBHI.2022.3147686. [2] WANG M, AN X W, PEI Z C, et al. An efficient multi-task synergetic network for polyp segmentation and classification[J]. IEEE J Biomed Health Inform, 2024, 28(3): 1228-1239. DOI:10.1109/JBHI.2023.3273728. [3] YUE G H, HAN W W, JIANG B, et al. Boundary constraint network with cross layer feature integration for polyp segmentation[J]. IEEE J Biomed Health Inform, 2022, 26(8): 4090-4099. DOI:10.1109/JBHI.2022.3173948. [4] JIN Q C, HOU H Y, ZHANG G X, et al. FEGNet: a feedback enhancement gate network for automatic polyp segmentation[J]. IEEE J Biomed Health Inform, 2023, 27(7): 3420-3430. DOI:10.1109/JBHI.2023.3272168. [5] 陆秋, 邵铧泽, 张云磊.动态平衡多尺度特征融合的结直肠息肉分割[J].图学学报, 2023, 44(2): 225-232. DOI:10.11996/JG.j.2095-302X.2023020225. [6] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C] //2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, USA, IEEE, 2015: 3431-3440. DOI:10.1109/CVPR.2015.7298965. [7] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M] //Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, Cham: Springer International Publishing, 2015: 234-241. DOI:10.1007/978-3-319-24574-4_28. [8] XIAO B, HU J W, LI W S, et al. CTNet: contrastive transformer network for polyp segmentation[J]. IEEE Trans Cybern, 2024, 54(9): 5040-5053. DOI:10.1109/TCYB.2024.3368154. [9] XIANG S Y, WEI L S, HU K F. Lightweight colon polyp segmentation algorithm based on improved DeepLabV3[J]. J Cancer, 2024, 15(1): 41-53. DOI:10.7150/jca.88684. [10] WU H S, ZHAO Z B, ZHONG J F, et al. PolypSeg: a lightweight context-aware network for real-time polyp segmentation[J]. IEEE Trans Cybern, 2023, 53(4): 2610-2621. DOI:10.1109/TCYB.2022.3162873. [11] CUI R S, YANG R Z, LIU F, et al. HD2A-Net: a novel dual gated attention network using comprehensive hybrid dilated convolutions for medical image segmentation[J]. Comput Biol Med, 2023, 152: 106384. DOI:10.1016/j.compbiomed.2022.106384. [12] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City, USA, IEEE, 2018: 4510-4520. DOI:10.1109/CVPR.2018.00474. [13] VÁZQUEZ D, BERNAL J, JAVIER SÁNCHEZ F, et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. J Healthc Eng, 2017, 2017: 4037190. DOI:10.1155/2017/4037190. [14] POGORELOV K, RANDEL K R, GRIWODZ C, et al. KVASIR: a multi-class image dataset for computer aided gastrointestinal disease detection[C] //Proceedings of the 8th ACM on Multimedia Systems Conference,ACM, 2017: 164-169. DOI:10.1145/3083187.3083212. [15] SÁNCHEZ-PERALTA L F, PAGADOR J B, PICÓN A, et al. PICCOLO white-light and narrow-band imaging colonoscopic dataset: a performance comparative of models and datasets[J]. Appl Sci, 2020, 10(23): 8501. DOI:10.3390/app10238501. [16] FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[M] //Medical Image Computing and Computer Assisted Intervention-MICCAI 2020, Cham: Springer International Publishing, 2020, 263-273. DOI:10.1007/978-3-030-59725-2_26. [17] ZHANG R F, LI G B, LI Z, et al. Adaptive context selection for polyp segmentation[M] //Medical Image Computing and Computer Assisted Intervention-MICCAI 2020, Cham: Springer International Publishing, 2020: 253-262. DOI:10.1007/978-3-030-59725-2_25. [18] WEI J, HU Y W, ZHANG R M, et al. Shallow attention network for polyp segmentation[M] //Medical Image Computing and Computer Assisted Intervention-MICCAI 2021, Cham: Springer International Publishing, 2021: 699-708. DOI:10.1007/978-3-030-87193-2_66. [19] LOU A G, GUAN S Y, KO H, et al. CaraNet: context axial reverse attention network for segmentation of small medical objects[C] //Medical Imaging 2022: Image Processing,San Diego, USA, SPIE, 2022: 81-92. DOI:10.1117/12.2611802. [20] WU C, LONG C, LI S J, et al. MSRAformer: Multiscale spatial reverse attention network for polyp segmentation[J]. Comput Biol Med, 2022, 151: 106274. DOI:10.1016/j.compbiomed.2022.106274. [21] YIN Z J, WEI R P, LIANG K M, et al. Semantic memory guided image representation for polyp segmentation[C] //ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Rhodes Island, Greece, IEEE, 2023: 1-5. DOI:10.1109/ICASSP49357.2023.10094302. [22] RUAN J C, XIANG S C, XIE M Y, et al. MALUNet: a multi-attention and light-weight UNet for skin lesion segmentation[C] //2022 IEEE International Conference on Bioinformatics and Biomedicine(BIBM), Las Vegas, USA, IEEE, 2022: 1150-1156. DOI:10.1109/BIBM55620.2022.9995040. [23] WU R K, LIU Y H, LIANG P C, et al. UltraLight VM-UNet: parallel vision mamba significantly reduces parameters for skin lesion segmentation[EB/OL]. 2024: 2403.20035. https://arxiv.org/abs/2403.20035v3. ( |