Journal of Hebei University(Natural Science Edition) ›› 2026, Vol. 46 ›› Issue (1): 68-80.DOI: 10.3969/j.issn.1000-1565.2026.01.008

Previous Articles    

Preparation and properties of aramid nanofiber films

HAN Yu1, GENG Hongzhang1, LI Xufeng2   

  1. 1.School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China; 2.Resin based R& D Department, Hohhot Aerospace Honggang Machinery Company, Hohhot 010020, China
  • Received:2025-08-19 Published:2026-01-16

Abstract: Aramid nanofiber(ANF), as a class of high-performance aromatic polyamide materials, are rapidly becoming the core choice in the field of structural materials due to their unique molecular structure of alternating rigid benzene rings and amide bonds and excellent properties such as high strength, high modulus, high temperature resistance and chemical stability. Yet, ANF still face two major bottlenecks in practical applications, the high brittleness of its macroscopic fiber morphology and the limitations of a single function, and at the same time, due to the materials own low fiber orientation and weak interfacial- 引用格式:张玲,彭芯钰,章瑞环,等.基于Winkler地基梁理论的拼宽公路新老路基差异沉降分析[J].河北大学学报(自然科学版),2026,46(1):1-12.引用格式:韩羽,耿宏章,李旭峰.芳纶纳米纤维薄膜的制备及性能[J].河北大学学报(自然科学版),2026,46(1):68-80.DOI:10.3969/j.issn.1000-1565.2026.01.008芳纶纳米纤维薄膜的制备及性能韩羽1,耿宏章1,李旭峰2(1.天津工业大学 材料科学与工程学院,天津 300387; 2.内蒙古航天红岗机械有限公司 树脂基研发部,内蒙古 呼和浩特 010020)摘 要:芳纶纳米纤维(aramid nanofiber,ANF)作为一类高性能芳香族聚酰胺材料,因其独特的刚性苯环、酰胺键交替排列分子结构和高强度、高模量、耐高温及化学稳定性等优异的性能,迅速成为结构材料领域的核心选择.然而,ANF在实际应用中仍面临两大瓶颈,其宏观纤维形态存在脆性高和功能单一等局限,同时由于材料自身纤维取向度低、界面结合弱,也导致了早期的溶液浇铸和热压成型等工艺逐渐被淘汰.本文利用真空抽滤法制备ANF薄膜.通过探究ANF分散液质量分数、真空压力、热压温度与压力等参数对ANF薄膜力学性能、热稳定性以及电学性能的影响,确定ANF薄膜制备的最优工艺条件:ANF分散液质量分数为5%,真空压力为0.1 kPa,热压温度为200 ℃,热压压力为15 MPa,该条件下制备的ANF薄膜具有优异的力学性能(拉伸强度为316.61 MPa,断裂伸长率为1.73%,杨氏模量为23.81 GPa)、热稳定性(热分解温度为 560 ℃,残碳率为30.23%)以及电学性能(电导率为8.526×10-8 S/cm,击穿场强为63 kV/mm,1 kHz下的介电常数为2.157).关键词:芳纶纳米纤维;真空抽滤;热稳定性;力学性能;电学性能中图分类号:TB324 文献标志码:A 文章编号:1000-1565(2026)01-0068-13DOI:10.3969/j.issn.1000-1565.2026.01.008Preparation and properties of aramid nanofiber filmsHAN Yu1, GENG Hongzhang1, LI Xufeng2(1.School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China; 2.Resin based R&D Department,Hohhot Aerospace Honggang Machinery Company,Hohhot 010020,China)Abstract: Aramid nanofiber(ANF), as a class of high-performance aromatic polyamide materials, are rapidly becoming the core choice in the field of structural materials due to their unique molecular structure of alternating rigid benzene rings and amide bonds and excellent properties such as high strength, high modulus, high temperature resistance and chemical stability. Yet, ANF still face two major bottlenecks in practical applications, the high brittleness of its macroscopic fiber morphology and the limitations of a single function, and at the same time, due to the materials own low fiber orientation and weak interfacial- 收稿日期:2025-08-19;修回日期:2025-09-19 基金项目:天津市自然科学基金重点项目(15JCZDJC37900) 第一作者:韩羽(1998—),男,天津工业大学硕士研究生.E-mail:15848134259@163.com 通信作者:李旭峰(1993—),男,内蒙古航天红岗机械有限公司研究员,主要从事纤维材料方向研究.E-mail:522263282@qq.com 第1期韩羽等:芳纶纳米纤维薄膜的制备及性能河北大学学报(自然科学版) 第46卷bonding, which has led to the gradual elimination of the early processes such as solution casting and hot compression molding. In this paper, ANF films were prepared by vacuum filtration. By exploring the effects of parameters such as dispersion concentration, vacuum pressure, hot pressing temperature and pressure on the mechanical, thermodynamic, and electrical properties of ANF films, the optimal process conditions for preparing ANF films were determined as follows: ANF dispersion concentration of 5%, vacuum pressure of 0.1 kPa, hot pressing temperature of 200 ℃, and hot pressing pressure of 15 MPa. The ANF films prepared exhibited excellent mechanical properties(tensile strength of 316.61 MPa, elongation at break of 1.73%, Young’s modulus of 23.81 GPa), thermal stability(thermal decomposition temperature of 560 ℃, residual carbon content of 30.23%)and electrical properties(electrical conductivity of 8.526×10-8 S/cm, breakdown field strength of 63 kV/mm, dielectric constant of 2.157 at 1 kHz).

Key words: aramid nanofiber, vacuum filtration, thermostability, mechanical properties, electrical properties

CLC Number: