河北大学学报(自然科学版) ›› 2020, Vol. 40 ›› Issue (5): 484-493.DOI: 10.3969/j.issn.1000-1565.2020.05.006
巩一潮,刘芃岩,刘桂随
收稿日期:
2019-06-20
出版日期:
2020-09-25
发布日期:
2020-09-25
通讯作者:
刘芃岩(1964—),女,河北保定人,河北大学教授,博士生导师,主要从事环境和食品分析化学的研究. E-mail:hbupyliu@163.com
作者简介:
巩一潮(1990—),男,河北隆尧人,河北大学在读博士研究生,主要从事环境和食品分析化学的研究. E-mail:gyichao@126.com
基金资助:
GONG Yichao,LIU Pengyan,LIU Guisui
Received:
2019-06-20
Online:
2020-09-25
Published:
2020-09-25
摘要: 新型污染物四溴双酚A(TBBPA)是一种常见的溴系阻燃剂(BFRs),广泛存在于塑料制品、纺织品和电子元件等产品中.由于TBBPA作为非反应型添加剂加到产品中,而易于扩散到环境中,并且因其具有持久性、生物毒性和累积性,进而对生态环境和人类健康造成严重威胁,因此环境中TBBPA的去除研究成为目前热点问题.论文通过近几年国内外的相关研究,对TBBPA的吸附、热降解、光降解和催化降解等去除方法及其机理进行了评述和比较,并对存在问题和今后研究方向进行了讨论和展望.
中图分类号:
巩一潮,刘芃岩,刘桂随. 四溴双酚A去除方法及其机理的研究进展[J]. 河北大学学报(自然科学版), 2020, 40(5): 484-493.
GONG Yichao,LIU Pengyan,LIU Guisui. Research progress on the removal method and mechanism of tetrabromobisphenol A[J]. Journal of Hebei University (Natural Science Edition), 2020, 40(5): 484-493.
[1] LAW R J, ALLCHIN C R, DE BOER J, et al. Levels and trends of brominated flame retardants in the European environment[J]. Chemosphere, 2006,64(2):187-208. DOI:10.1016/j.chemosphere.2005.12.007. [2] BIRNBAUM L S S D. Brominated flame retardants: cause for concern?[J]. Environmental Health Perspectives, 2004,112(1):9-17. DOI:10.1289/ehp.6559. [3] LIU K, LI J, YAN S, et al. A review of status of tetrabromobisphenol A(TBBPA)in China[J]. Chemosphere, 2016,148:8-20. DOI:10.1016/j.chemosphere.2016.01.023. [4] WATANABE I, KASHIMOTO T, TATSUKAWA R. Polybrominated biphenyl ethers in marine fish, shellfish and river and marine sediments in Japan[J]. Chemosphere, 1987,16(10):2389-2396. DOI:10.1016/0045-6535(87)90297-9. [5] SALAPASIDOU M, SAMARA C, VOUTSA D. Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece[J]. Atmospheric Environment, 2011,45(22):3720-3729. DOI:10.1016/j.atmosenv.2011.04.025. [6] BATTERMAN S, GODWIN C, CHERNYAK S, et al. Brominated flame retardants in offices in Michigan, U.S.A.[J]. Environment International, 2010,36(6):548-556. DOI:10.1016/j.envint.2010.04.008. [7] COVACI A, HARRAD S, ABDALLAH M A E, et al. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour[J]. Environment International, 2011,37(2):532-556. DOI:10.1016/j.envint.2010.11.007. [8] MATSUKAMI H, TUE N M, SUZUKI G, et al. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs[J]. Science of The Total Environment, 2015,514:492-499. DOI:10.1016/j.scitotenv.2015.02.008. [9] HUANG Q, LIU W, PENG P A, et al. Reductive debromination of tetrabromobisphenol A by Pd/Fe bimetallic catalysts[J]. Chemosphere, 2013,92(10):1321-1327. DOI:10.1016/j.chemosphere.2013.05.021. [10] OSAKO M, KIM Y, SAKAI S. Leaching of brominated flame retardants in leachate from landfills in Japan[J]. Chemosphere, 2004,57(10):1571-1579. DOI:10.1016/j.chemosphere.2004.08.076. [11] FASFOUS I I, RADWAN E S, DAWOUD J N. Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes[J]. Applied Surface Science, 2010,256(23):7246-7252. DOI:10.1016/j.apsusc.2010.05.059. [12] ZHANG Y, TANG Y, LI S, et al. Sorption and removal of tetrabromobisphenol A from solution by graphene oxide[J]. Chemical Engineering Journal, 2013,222:94-100. DOI:10.1016/j.cej.2013.02.027. [13] SHEN J, HUANG G, AN C, et al. Removal of Tetrabromobisphenol A by adsorption on pinecone-derived activated charcoals: Synchrotron FTIR, kinetics and surface functionality analyses[J]. Bioresource Technology, 2018,247:812-820. DOI:10.1016/j.biortech.2017.09.177. [14] ZHOU L, JI L, MA P, et al. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II)[J]. Journal of Hazardous Materials, 2014,265:104-114. DOI:10.1016/j.jhazmat.2013.11.058. [15] ZHANG Y, JING L, HE X, et al. Sorption enhancement of TBBPA from water by fly ash-supported nanostructured γ-MnO2[J]. Journal of Industrial and Engineering Chemistry, 2015,21:610-619. DOI:10.1016/j.jiec.2014.03.027. [16] ZHOU Q, WANG Y, XIAO J, et al. Preparation of magnetic core-shell Fe3O4@ polyaniline composite material and its application in adsorption and removal of tetrabromobisphenol A and decabromodiphenyl ether[J]. Ecotoxicology and environmental safety, 2019,183:109471. DOI:10.1016/j.ecoenv.2019.109471. [17] LIU L L, CHEN X, WANG Z P, et al. The removal mechanism and performance of tetrabromobisphenol A with a novel multi-group activated carbon from recycling long-root Eichhornia crassipes plants[J]. RSC advances, 2019,9(43):24760-24769. DOI:10.1039/C9RA03374B. [18] CUI Y Y, REN H B, YANG C X, et al. Room-temperature synthesis of microporous organic network for efficient adsorption and removal of tetrabromobisphenol A from aqueous solution[J]. Chemical Engineering Journal, 2019,368:589-597. DOI:10.1016/j.cej.2019.02.153. [19] CUI Y Y, REN H B, YANG C X, et al. Facile synthesis of hydroxyl enriched microporous organic networks for enhanced adsorption and removal of tetrabromobisphenol A from aqueous solution[J]. Chemical Engineering Journal, 2019,373:606-615. DOI:10.1016/j.cej.2019.05.082. [20] DUAN F, QIN L, CHEN C, et al. Adsorption of tetrabromobisphenol A in aqueous solutions by porous carbon nanospheres[J]. Carbon, 2019,153:805. DOI:10.1016/j.carbon.2019.06.096. [21] ZHOU T, TAO Y, XU Y, et al. Facile preparation of magnetic carbon nanotubes@ ZIF-67 for rapid removal of tetrabromobisphenol A from water sample[J]. Environmental Science and Pollution Research, 2018,25(35):35602-35613. DOI:10.1007/s11356-018-3239-9. [22] BARONTINI F, MARSANICH K, PETARCA L, et al. The thermal degradation process of tetrabromobisphenol A[J]. Industrial & Engineering Chemistry Research, 2004,43(9):1952-1961. DOI:10.1021/ie034017c. [23] MARSANICH K, ZANELLI S, BARONTINI F, et al. Evaporation and thermal degradation of tetrabromobisphenol A above the melting point[J]. Thermochimica Acta, 2004,421(1-2):95-103. DOI:org/10.1016/j.tca.2004.03.013. [24] BARONTINI F, COZZANI V, MARSANICH K, et al. An experimental investigation of tetrabromobisphenol A decomposition pathways[J]. Journal of Analytical and Applied Pyrolysis, 2004,72(1):41-53. DOI:10.1016/j.jaap.2004.02.003. [25] LUDA M P, BALABANOVICH A I, HORNUNG A, et al. Thermal degradation of a brominated bisphenol a derivative[J]. Polymers for Advanced Technologies, 2003,14(11-12):741-748. DOI:10.1002/pat.389. [26] BARONTINI F, MARSANICH K, PETARCA L, et al. Thermal degradation and decomposition products of electronic boards containing BFRs[J]. Industrial & Engineering Chemistry Research, 2005,44(12):4186-4199. DOI:10.1021/ie048766l. [27] ZHANG C C, SAHAJWALLA V, ZHANG F S. Tetrabromobisphenol A recovery from computer housing plastic by a new solvothermal process[J]. Environmental Chemistry Letters, 2014,12(2):347-352. DOI:10.1007/s10311-014-0452-8. [28] ZHANG C C, ZHANG F S. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique[J]. Journal of Hazardous Materials, 2012,221-222:193-198. DOI:10.1016/j.jhazmat.2012.04.033. [29] KUMAGAI S, GRAUSE G, KAMEDA T, et al. Thermal decomposition of tetrabromobisphenol-A containing printed circuit boards in the presence of calcium hydroxide[J]. Journal of Material Cycles and Waste Management, 2017,19(1):282-293. DOI:10.1007/s10163-015-0417-4. [30] OLESZEK S, GRABDA M, SHIBATA E, et al. Study of the reactions between tetrabromobisphenol A and PbO and Fe2O3 in inert and oxidizing atmospheres by various thermal methods[J]. Thermochimica Acta, 2013,566:218-225. DOI:10.1016/j.tca.2013.06.003. [31] AL-HARAHSHEH M, ALJARRAH M, AL-OTOOM A, et al. Pyrolysis kinetics of tetrabromobisphenol a(TBBPA)and electric arc furnace dust mixtures[J]. Thermochimica Acta, 2018,660:61-69. DOI:10.1016/j.tca.2017.12.022. [32] AL-HARAHSHEH M, AL-OTOOM A, AL-JARRAH M, et al. Thermal analysis on the pyrolysis of tetrabromobisphenol A and electric arc furnace dust mixtures[J]. Metallurgical and Materials Transactions B, 2018,49(1):45-60. DOI:10.1007/s11663-017-1121-7. [33] OLESZEK S, GRABDA M, SHIBATA E, et al. Fate of lead oxide during thermal treatment with tetrabromobisphenol A[J]. Journal of Hazardous Materials, 2013,261:163-171. DOI:10.1016/j.jhazmat.2013.07.028. [34] GRABDA M, OLESZEK S, SHIBATA E, et al. Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA[J]. Journal of Hazardous Materials, 2014,278:25-33. DOI:10.1016/j.jhazmat.2014.05.084. [35] HAN Q, DONG W Y, WANG H J, et al. Degradation of tetrabromobisphenol a by ozonation: Performance, products, mechanism and toxicity[J]. Chemosphere, 2019,235:701-712. DOI:10.1016/j.chemosphere.2019.06.204. [36] ERIKSSON J, RAHM S, GREEN N, et al. Photochemical transformations of tetrabromobisphenol A and related phenols in water[J]. Chemosphere, 2004,54(1):117-126. DOI:10.1016/S0045-6535(03)00704-5. [37] JAKOBSSON K, THURESSON K, RYLANDER L, et al. Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians[J]. Chemosphere, 2002,46(5): 709-716. DOI:10.1016/S0045-6535(01)00235-1. [38] GUO Y G, ZHOU J, LOU X Y, et al. Enhanced degradation of Tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates[J]. Chemical Engineering Journal, 2014,254:538-544. DOI:10.1016/j.cej.2014.05.143. [39] WANG S, WANG Z, HAO C, et al. A DFT/TDDFT study on the mechanisms of direct and indirect photodegradation of tetrabromobisphenol A in water[J]. Chemosphere, 2019,220:40-46. DOI:10.1016/j.chemosphere.2018.12.087. [40] HE H, JI Q Y, GAO Z Q, et al. Degradation of tri(2-chloroisopropyl)phosphate by the UV/H2O2 system: Kinetics, mechanisms and toxicity evaluation[J]. Chemosphere, 2019,236:124388. DOI:10.1016/j.chemosphere.2019.124388. [41] ZHONG Y, LIANG X, TAN W, et al. A comparative study about the effects of isomorphous substitution of transition metals(Ti, Cr, Mn, Co and Ni)on the UV/Fenton catalytic activity of magnetite[J]. Journal of Molecular Catalysis A: Chemical, 2013,372:29-34. DOI:10.1016/j.molcata.2013.01.038. [42] ZHONG Y, LIANG X, ZHONG Y, et al. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products[J]. Water Research, 2012,46(15):4633-4644. DOI:10.1016/j.watres.2012.06.025. [43] LI N, ZHANG J Q, WANG C P, et al. Enhanced photocatalytic degradation of tetrabromobisphenol A by tourmaline-TiO2 composite catalyst[J]. Journal of Materials Science, 2017,52(12):6937-6949. DOI:10.1016/S1872-2067(17)62795-5. [44] ZHANG X Y, ZHANG H X, XIANG Y Y, et al. Synthesis of silver phosphate/graphene oxide composite and its enhanced visible light photocatalytic mechanism and degradation pathways of tetrabromobisphenol A[J]. Journal of Hazardous Materials, 2018,342:353-363. DOI:10.1016/j.jhazmat.2017.08.048. [45] TANG Y, DONG L, MAO S, et al. Enhanced photocatalytic removal of tetrabromobisphenol A by magnetic CoO@ graphene nanocomposites under visible-light irradiation[J]. ACS Applied Energy Materials, 2018,1(6):2698-2708. DOI:10.1021/acsaem.8b00379. [46] AN B H, LIU Y A, XU C C, et al. Novel magnetically separable Fe3O4-WSe2/NG photocatalysts: synthesis and photocatalytic performance under visible-light irradiation[J]. New Journal of Chemistry, 2018,42(11):8914-8923. DOI:10.1039/C8NJ00406D. [47] SAHU R S, SHIH Y H. Reductive debromination of tetrabromobisphenol A by tailored carbon nitride Fe/Cu nanocomposites under an oxic condition[J]. Chemical Engineering Journal, 2019,378:122059. DOI:10.1016/j.cej.2019.122059. [48] GUO Y, CHEN L, MA F, et al. Efficient degradation of tetrabromobisphenol A by heterostructured Ag/Bi5Nb3O15 material under the simulated sunlight irradiation[J]. Journal of Hazardous Materials, 2011,189(1-2):614-618. DOI:10.1016/j.jhazmat.2011.02.054. [49] LI J H, YANG F, ZHOU Q, et al. Visible-light photocatalytic performance, recovery and degradation mechanism of ternary magnetic Fe3O4/BiOBr/BiOI composite[J]. RSC advances, 2019, 9(41): 23545-23553. DOI:10.1039/C9RA04412D. [50] ZHANG K, HUANG J, ZHANG W, et al. Mechanochemical degradation of tetrabromobisphenol A: performance, products and pathway[J]. Journal of Hazardous Materials, 2012,243:278-285. DOI:10.1016/j.jhazmat.2012.10.034. [51] HOU Y P, PENG Z B, WANG L, et al. Efficient degradation of tetrabromobisphenol A via electrochemical sequential reduction-oxidation: Degradation efficiency, intermediates, and pathway[J]. Journal of Hazardous Materials, 2018,343:376-385. DOI:10.1016/j.jhazmat.2017.10.004. [52] PENG Z B, YU Z B, WANG L, et al. Facile synthesis of Pd-Fe nanoparticles modified Ni foam electrode and its behaviors in electrochemical reduction of tetrabromobisphenol A[J]. Materials Letters, 2016,166:300-303. DOI:10.1016/j.matlet.2015.12.110. [53] PENG X X, TIAN Y, LIU S W, et al. Degradation of TBBPA and BPA from aqueous solution using organo-montmorillonite supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2017,309:717-724. DOI:10.1016/j.cej.2016.10.075. [54] ZIÓŁKOWSKA M, MILEWSKA-DUDA J, DUDA J T. Effect of adsorbate properties on adsorption mechanisms: computational study[J]. Adsorption, 2016,22(4-6):589-597. DOI:10.1007/s10450-015-9736-y. [55] CHENG H M, HUA Z L. Distribution, release and removal behaviors of tetrabromobisphenol A in water-sediment systems under prolonged hydrodynamic disturbances[J]. Science of the Total Environment, 2018,636:402-410. DOI:10.1016/j.scitotenv.2018.04.276. [56] RAYNE S, FOREST K, FRIESEN K J. Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. A review[J]. Environment International, 2009,35(2):425-437. DOI:10.1016/j.envint.2008.09.004. [57] WANG X, HU X, ZHANG H, et al. Photolysis kinetics, mechanisms, and pathways of tetrabromobisphenol A in water under simulated solar light irradiation[J]. Environmental Science & Technology, 2015,49(11):6683-6690. DOI:10.1021/acs.est.5b00382. [58] BAO Y, NIU J. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: Kinetics, mechanism and influencing factors[J]. Chemosphere, 2015,134:550-556. DOI:10.1016/j.chemosphere.2014.12.016. [59] GAO S, GUO C, HOU S, et al. Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation[J]. Journal of Hazardous Materials, 2017,331:1-12. DOI:10.1016/j.jhazmat.2017.02.030. |
[1] | 薛迎港,孟浩,王照文,赵文泽,刘保亭,代秀红. La0.67Sr0.33MnO3/PbZr0.4Ti0.6O3/La0.67Sr0.33MnO3外延铁电电容器物理性能[J]. 河北大学学报(自然科学版), 2022, 42(4): 364-369. |
[2] | 杨华美,蒋菊,刘望,张秉哲,徐盼盼. 纤维素/木质素共热解过程中的气相反应[J]. 河北大学学报(自然科学版), 2022, 42(3): 273-280. |
[3] | 赵琳珊,李玉苗,李楠,贾友超,王晓芳,韩强,臧爱民. 西达本胺通过线粒体凋亡途径诱导结肠癌HCT-15细胞凋亡[J]. 河北大学学报(自然科学版), 2022, 42(2): 164-170. |
[4] | 蔺志平,张喜莲,金立平,赵宠,张仕径,乔凤霞. 赋硫生物炭的制备及在去除废水有机物中的应用[J]. 河北大学学报(自然科学版), 2018, 38(4): 385-391. |
[5] | 马志领,张春燕,温雅静. 制备温度对氧化铁包覆铝粉颜料的耐腐蚀性影响[J]. 河北大学学报(自然科学版), 2017, 37(6): 584-589. |
[6] | 祝郦伟,杨丙坤,刘敏,胡家秀,钱洲亥. Q235扁钢接地材料杂散电流腐蚀行为研究[J]. 河北大学学报(自然科学版), 2016, 36(5): 494-500. |
[7] | 张爱民,李乃康,赵钢勇,张双凤. 土壤中解磷、解钾微生物研究进展[J]. 河北大学学报(自然科学版), 2015, 35(4): 442-448. |
[8] | 刘利,李红亚,闫志宇,李术娜. 发酵花生秧粉对育肥猪生产性能的影响及其促生长机理[J]. 河北大学学报(自然科学版), 2015, 35(4): 390-398. |
[9] | 孙汉文,孟 哲,石志红 ,吕运开. UPLC-Q-TOF/MS法鉴定兽药磺胺二甲嘧啶在小鼠血液和尿液中的代谢产物[J]. 河北大学学报(自然科学版), 2015, 35(2): 131-137. |
[10] | 马志领,李晓英,丁春月. 季戊四醇醚化氨基树脂为基材的膨胀型防火清漆[J]. 河北大学学报(自然科学版), 2013, 33(1): 29-34. |
[11] | 李娜,张圆圆,李兰芬,丁士文. 低温固态反应制备纳米锆酸钡及其反应机理[J]. 河北大学学报(自然科学版), 2012, 32(1): 63-67. |
[12] | 那刚,李锻,吴彦,李杰,鲁娜. 线-筒式脉冲高压电晕放电降解四氯乙烯/间二甲苯混合污染物[J]. 河北大学学报(自然科学版), 2010, 30(5): 534-537. |
[13] | 蒋继志,李莎,王会仙. 3株致病疫霉拮抗放线菌复合发酵及其抑制机理[J]. 河北大学学报(自然科学版), 2010, 30(1): 78-82. |
[14] | 陈剑辉,刘保亭,孙杰,霍骥川,赵敬伟,王玉强,赵庆勋. 脉冲激光沉积法制备的Pb(Zr0.4Ti0.6)O3铁电薄膜漏电机理[J]. 河北大学学报(自然科学版), 2009, 29(5): 474-479. |
[15] | 申世刚,杜荣健,石红梅,郝增华,彭松. 二(过碘酸)合银(Ⅲ)配离子氧化L-谷氨酰胺的[J]. 河北大学学报(自然科学版), 2009, 29(3): 311-317. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||