河北大学学报(自然科学版) ›› 2022, Vol. 42 ›› Issue (4): 343-349.DOI: 10.3969/j.issn.1000-1565.2022.04.002

• • 上一篇    下一篇

无限维齐性Rota-Baxter 3-李代数(Ⅱ)

白瑞蒲,刘山   

  • 收稿日期:2021-02-06 出版日期:2022-07-25 发布日期:2022-09-14
  • 作者简介:白瑞蒲( 1960 —),女,河北保定人,河北大学教授,博士,主要从事李群、李代数方向研究.
    E-mail:bairuipu@hbu.edu.cn
  • 基金资助:
    河北省自然科学基金资助项目(20182011126)

Infinite dimensional homogenous Rota-Baxter 3-Lie algebras(Ⅱ)

BAI Ruipu, LIU Shan   

  1. College of Mathematics and Information Science, Hebei University, Baoding 071002, China
  • Received:2021-02-06 Online:2022-07-25 Published:2022-09-14

摘要: 利用无限维单3-李代数Aω上权为1且满足g(0)+g(1)+1=0的齐性Rota-Baxter算子Rk,构造了13类齐性Rota-Baxter 3-李代数Ak,1≤k≤13,证明了在齐性Rota-Baxter 3-李代数Ak中存在5类两两不同构的齐性Rota-Baxter 3-李代数Di,并研究了每一类3-李代数Di的结构,1≤i≤5.

关键词: 3-李代数, Rota-Baxter算子, 齐性Rota-Baxter 3-李代数

Abstract: 13 classes of homogeneous Rota-Baxter 3-Lie algebras Ak are constructed by using the homogeneous Rota-Baxter operators Rk, 1≤k≤13, with weight 1 and satisfying g(0)+g(1)+1=0 on infinite dimensional simple 3-Lie algebra Aω. It is proved that there are 5 classes of non-isomorphic homogeneous Rota-Baxter 3-Lie algebras Di,1≤i≤5, in the homogeneous Rota-Baxter 3-Lie Algebra Ak,1≤k≤13, and the structure of each class of 3-Lie algebras Di, 1≤i≤5, is studied.

Key words: 3-Lie algebra, Rota-Baxter operator, homogenous Rota-Baxter 3-Lie algebra

中图分类号: