[1] LAU H K, PLENIO M B. Laser cooling of a high-temperature oscillator by a three-level system[J]. Physical Review B, 2016, 94(5): 054305. DOI: 10.1103/PhysRevB.94.054305. [2] YAN X A, WANG L Q, YIN B Y, et al. Electromagnetically induced transparency and enhanced self-Kerr nonlinearity in a four-level scheme[J]. Optik-International Journal for Light and Electron Optics, 2011, 122(11):986-990.DOI: 10.1016/j.ijleo.2010.06.034. [3] BUDRIGA O. Amplification without inversion and high refractive index in heterogeneous molecules[J]. Optics Communications, 2014, 328: 77-86. DOI: 10.1016/j.optcom.2014.04.064. [4] ZHU J, XU Z J, WENG G J, et al. Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2018, 200:43. DOI: 10.1016/j.saa.2018.04.013. [5] KESHAVARZ A, ZAKERY A. A novel terahertz semiconductor metamaterial for slow light device and dual-band modulator applications[J]. Plasmonics, 2018, 13(2): 459-466. DOI: 10.1007/s11468-017-0531-3. [6] FLEISCHHAUER M, IMAMOGLU A, MARANGOS J P. Electromagnetically induced transparency: Optics in coherent media [J]. Reviews of Modern Physics, 2005, 77(2): 633. DOI: 10.1103/RevModPhys.77.633. [7] IVANOV A, ROZHDESTVENSKY Y, PERLIN E. Minimization of temperature for laser cooling of Yb-ion-doped crystals[J]. Applied Optics, 2016, 55(28):7764-7770. DOI: 10.1364/AO.55.007764. [8] 仇满德,韩庆娇,崔炎龙,等.锐钛型 TiO2 纳米管阵列的制备及微结构调控[J].河北大学学报(自然科学版),2017,37(7):378-385.DOI:10.3969/j.issn.1000-1565.2017.04.008. [9] ZHANG S, GENOV D A, WANG Y, et al. Plasmon-induced transparency in metamaterials.[J]. Physical Review Letters, 2008, 101(4):047401. DOI: 10.1103/PhysRevLett.101.047401. [10] SUN Y, JIANG H, YANG Y, et al. Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution [J]. Physical Review B, 2011, 83(19): 195140. DOI: 10.1103/PhysRevB.83.195140. [11] ZHENG X, ZHAO Z, SHI W, et al. Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules[J]. Optical Materials Express, 2017, 7(3): 1035-1047. DOI: 10.1364/OME.7.001035. [12] PITCHAPPA P, MANJAPPA M, CHONG P H, et al. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices[J]. Applied Physics Letters, 2016, 108(11):977. DOI: 10.1063/1.4943974. [13] SHI X, HAN D, DAI Y, et al. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene[J]. Optics Express, 2013, 21(23):28438-43. DOI: 10.1364/OE.21.028438. [14] LI H, LIU S, WANG S, et al. Tailoring electromagnetically induced transparency with different coupling mechanisms[J]. Scientific Reports, 2016, 6:21457. DOI: 10.1038/srep21457. [15] BAO Q Q, ZHANG Y, CUI C L, et al. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms[J]. Optics Communications, 2018, 412:49-54. DOI: 10.1016/j.optcom.2017.11.081. [16] DUTTA B K, PANCHADHVAVEE P. Modification of optical properties by adiabatic shifting of resonances in a four-level atom[J]. Laser Physics, 2018, 28(4): 045201.DOI: 10.1088/1555-6611/aa9968. [17] TANG H, ZHOU L, XIE J, et al. Electromagnetically induced transparency in a silicon self-coupled optical waveguide[J]. Journal of Lightwave Technology, 2018, 36(11): 2188-2195.DOI: 10.1109/JLT.2018.2804889. [18] NIU Y, WANG J, HU Z, et al. Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces[J]. Optics Communications, 2018, 416:77-83. DOI: 10.1016/j.optcom.2018.02.009 |