[1] 陈顺生,曹鑫,陈春卉, 等.TiO2基复合光催化剂研究进展[J]. 功能材料,2018,(49)7:07039-07049. [2] 冯春波,杜志平,赵永红,等. Au改性纳米TiO2材料对 NPE-10 光催化降解的活性[J]. 物理化学学报,2006,22(8):953-957. [3] 王超,敬和民. 铁掺杂二氧化钛光催化性能研究[J]. 化工时刊, 2018,32(8):4-7.DOI: 10.16597/j.cnki.issn.1002-154x.2018.08.002. [4] 崔玉民,白翠冰,苗慧,等. 石墨相氮化碳与半导体光催化剂复合研究进展[J]. 水处理技术,2018,44(9):1-6.DOI: 10.13796/j.cnki.1000-3770.2018.09.001. [5] 施海波,王騊,王晟. 紫外光还原法制备Cu2O/TiO2及其光催化性能[J]. 浙江理工大学学报,2015,33(3):188-192. [6] 高溢,刘佳雯,李中华. Au/TiO2纳米光催化剂的制备及光催化性能研究[J]. 化学工程师,2016,30(2):1-3.DOI: 10.16247/j.cnki.23-1171/tq.20160201. [7] 郑改革,赖敏,徐林华,等. 金-二氧化钛(Au-TiO2)复合薄膜的制备及局域表面等离子体共振(LSPR)效应[J]. 大学物理实验,2012,25(2):1-3.DOI: 10.14139/j.cnki.cn22-1228.2012.02.001. [8] 张靖峰. 纳米ZnO复合物的制备及其光催化降解NPE-10研究[D]. 太原:中国日用化学工业研究院,2007. [9] CHAKRABORTY S, ANSAR S M, STROND J M, et al. Comparision of colloidal versus supported gold nanoparticle catalysis[J]. J Phys Chem C, 2018, 122: 7749-7758. [10] WENDERICH K, MUL G. Methods,mechanism,and applications of photodeposition in photocatalysis: A review[J]. Chemical Reviews, 2016, 116(23): 14587-14619. DOI:10.1021/acs.chemrev.6b00327. [11] TANAKA A, HASHIMOTO K J, KOMINAMI H. A very simple method for the preparation of Au/TiO2 Plasmonic photocatalysts working under irradiation of visible light in the range of 600-700nm[J]. Chemical Communion, 2017, 35(53): 4759-4762. DOI:101039/c7cc01444a. [12] 王杰祥,张正富,赵恩格,等. Au核@Pt壳纳米粒子的光化学还原法合成及表征[J]. 稀有金属, 2015,38(3):527-533.DOI: 10.13373/j.cnki.cjrm.2014.03.026. [13] SPURR R A, MYERS H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer[J]. Analytical Chemistry, 1957, 29(5): 760-762. [14] MA Z L, QIAO Y J, WEN Y J, et al. Effect of precursors on the anti-corrosion property of silica encapsulated waterborne aluminium pigments[J]. Pigment & Resin Technology, 2017, 46(2): 100-106. DOI:org/10.1108/PRT-02-2016-0017. [15] RAUT S S, ADPA S K, JAMBHALE A, et al. Enhanced photocatalytic activity of magnetic BaFe12O19 nano-platelets than TiO2 with emphasis on reaction kinetics, mechanism and reusability[J]. Industrial & Engineering Chemistry Research, 2018, 57: 16192-16200. [16] 王澍. 金溶胶合成过程中的物理化学基本问题研究[D]. 合肥:中国科学技术大学,2009. [17] DANIEL M C, ASTRUC D. Gold nanoparticles:Assembly, supramolecular chemictry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004, 104(1): 293-346. [18] 叶春洁,赵玉云,陈嵘,等.金纳米粒子与蛋白质的相互作用及其应用[J]. 中国科学:化学,2012,42(12):1672-1682.DOI: 10.1360/032072-393. [19] DINKEL R, JAKOBI J, ZIEFUß A R, et al. Role of citrate and NaBr at the surface of colloidal gold nanoparticles during functionalization[J]. J Phys Chem C, 2018, 122, 27383-27391. DOI:10.1021/acs.jpcc.8b07897. [20] QIAN K,SWEENY B C, JOHNSTON-PECK A C, et al. Surface plasmon-driven water reduction:Gold nanoparticle size matters[J]. J Am Chem Soc, 2014, 136: 9842-9845. DOI:org/10.1021/ja504097v. [21] 孙秀兰,赵晓联,汤坚. 纳米金溶胶形成过程的可见光吸收光谱研究[J]. 无锡轻工大学学报,2004,23(4):86-89. [22] 刘阳,王晟,王騊,等.紫外光原位还原法制备Pt/TiO2及其光催化性能研究[J]. 浙江理工大学学报,2010,27(1):18-21. |