[1] MILLMAN V D, MYSHKIS A D. On the stability of motion in the presence of impulses [J]. Sibirski Math, 1960, 1(2): 233-237. [2] MILLMAN V D, MYSHKIS A D. Random impulses in linear dynamical systems [J]. Approximante Methods for Solving Differential Equations, 1963: 64-81. [3] HERNÁNDEZ E, O’REGAN D. On a new class of abstract impulsive differential equations [J]. Proceedings of the American Mathematical Society, 2012,141(5): 1641-1649. DOI:10.1090/S0002-9939-2012-11613-2. [4] AGARWAL R, HRISTOVA S, O’REGAN D. Non-instantaneous impulses in differential equations [M]. Cham: Springer Nature, 2017. [5] AGARWAL R, O’REGAN D, HRISTOVA S. Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses [J]. Applied Mathematics and Computation, 2017, 298: 45-56. DOI:10.1016/j.amc.2016.10.009. [6] AGARWAL R, O’REGAN D, HRISTOVA S. Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions [J]. Journal of the Franklin Institute, 2017, 354(7):3097-3119. DOI:10.1016/j.jfranklin.2017.02.002. [7] AGARWAL R, O’REGAN D, HRISTOVA S. Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses [J]. Applied Mathematics and Computation, 2017, 53(1-2): 147-168. DOI:10.1007/s12190-015-0961-z. [8] 姚美萍,胡静.一阶非瞬时脉冲微分方程边值问题[J].山西大学学报(自然科学版), 2019, 42(1):78-82. DOI:10.13451/j.cnki.shanxi.univ(nat.sci.).2018.06.18.002. [9] LOPES P,BRANDÃO A J, DE BLASI F S, et al. Uniqueness and existence theorems for differential equations with compact convex valued solutions [J]. Bollettino dell’Unione Matematica Italiana, 1969, 3: 47-54. [10] LAKSHMIKANTHAM V, BHASKAR T G, DEVI J V. Theory of set differential equations in metric spaces [M]. London: Cambridge Scientific Publishers, 2006. [11] DEVI J V. Basic results in impulsive set differential equations [J]. Nonlinear Studies, 2003, 10(3): 259-271. [12] MCRAE F A, DEVI J V. Impulsive set differential equations with delay [J]. Applicable Analysis, 2005, 84(4): 329-341.DOI:10.1080/00036810410001731483. [13] 洪世煌,邢秀丽, 邢国琴.脉冲集值微分方程解的存在性[J].应用数学, 2013, 26(2): 326-332.DOI:10.3969/j.issn.1001-9847.2013.02.011. [14] LAKSHMIKANTHAM V, LEELA S. Differential and integral inequalities [M]. NewYork and London: Academic Press, 1969. ( |