河北大学学报(自然科学版) ›› 2024, Vol. 44 ›› Issue (4): 424-432.DOI: 10.3969/j.issn.1000-1565.2024.04.011

• • 上一篇    下一篇

基于改进YOLOv5s的肠镜息肉多分类实时检测方法

薛林雁1,2,3,李轩昂1,齐晁仪1,曹杰1,张颖1,艾尚璞1,杨昆1,2,3   

  • 收稿日期:2024-03-16 出版日期:2024-07-25 发布日期:2024-07-12
  • 通讯作者: 杨昆(1976—)
  • 作者简介:薛林雁(1981—),女,河北大学副教授,主要从事生物医学图像处理方向研究.E-mail: lyxue@hbu.edu.cn
  • 基金资助:
    河北省自然科学基金资助项目(F2023201069);保定市创新能力提升专项项目(2394G027);河北大学研究生创新项目(HBU2024BS021;HBU2024SS011);河北大学科研创新团队项目(IT2023B07);大学生创新创业训练计划创新训练项目(DC2024376;DC2024381)

A real-time multi-class detection method for colonoscopy polyps based on improved YOLOv5s

XUE Linyan1,2,3, LI Xuanang1, QI Chaoyi1, CAO Jie1, ZHANG Ying1, AI Shangpu1, YANG Kun1,2,3   

  1. 1. College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; 2. National & Local Joint Engineering Research Center of Metrology Instrument and System, Baoding 071002, China; 3. New Energy Vehicle Power System Lightweight Technology Innovation Center of Hebei Province, Baoding 071002, China
  • Received:2024-03-16 Online:2024-07-25 Published:2024-07-12

摘要: 为了在肠镜检查过程中对结直肠息肉进行快速鉴别检测,提出一种基于改进YOLOv5s的肠镜息肉多分类实时检测模型.该模型采用ConvNeXt作为主干网络, 融入SimAM注意力机制提升检测性能,同时在颈部网络中使用基于GSConv的slim-neck模块减少网络参数.为了对模型进行训练和测试,构建了包含1 676张息肉图像并由专业医生标注的结直肠息肉数据集.提出的模型在测试集上的平均精度均值(mAP@0.5)为83.0%,相较于改进前提升8.4%,检测速度达到120帧/s. 此外,模型在边缘侧部署检测速度超过25帧/s.结果表明,改进的YOLOv5s满足临床结肠镜检查对实时性与准确性的要求.

关键词: 息肉, 腺瘤, 检测, YOLOv5s, 实时性

Abstract: To facilitate rapid identification and detection of colorectal polyps during colonoscopy procedures, a real-time multi-class detection model for colonoscopic polyps based on modified YOLOv5s is proposed. This model utilizes ConvNeXt as thebackbone network and incorporates the SimAM attention mechanism to improve detection performance. Additionally, a slim-neck module based on GSConv is employed in the neck network to reduce network parameters. For model training and testing, a colorectal polyp dataset containing 1 676 images annotated by professional doctors was constructed. The proposed model achieves a mean Average Precision(mAP@0.5)of 83.0% on the test set, which is an improvement- DOI:10.3969/j.issn.1000-1565.2024.04.011基于改进YOLOv5s的肠镜息肉多分类实时检测方法薛林雁1,2,3,李轩昂1,齐晁仪1,曹杰1,张颖1,艾尚璞1,杨昆1,2,3(1.河北大学 质量技术监督学院,河北 保定 071002;2.计量仪器与系统国家地方联合工程研究中心,河北 保定 071002;3.河北省新能源汽车动力系统轻量化技术创新中心,河北 保定 071002)摘 要:为了在肠镜检查过程中对结直肠息肉进行快速鉴别检测,提出一种基于改进YOLOv5s的肠镜息肉多分类实时检测模型.该模型采用ConvNeXt作为主干网络, 融入SimAM注意力机制提升检测性能,同时在颈部网络中使用基于GSConv的slim-neck模块减少网络参数.为了对模型进行训练和测试,构建了包含1 676张息肉图像并由专业医生标注的结直肠息肉数据集.提出的模型在测试集上的平均精度均值(mAP@0.5)为83.0%,相较于改进前提升8.4%,检测速度达到120帧/s. 此外,模型在边缘侧部署检测速度超过25帧/s.结果表明,改进的YOLOv5s满足临床结肠镜检查对实时性与准确性的要求.关键词:息肉;腺瘤;检测;YOLOv5s;实时性中图分类号:TP391.7 文献标志码:A 文章编号:1000-1565(2024)04-0424-09A real-time multi-class detection method for colonoscopy polyps based on improved YOLOv5sXUE Linyan1,2,3, LI Xuanang1, QI Chaoyi1, CAO Jie1, ZHANG Ying1, AI Shangpu1, YANG Kun1,2,3(1. College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; 2. National & Local Joint Engineering Research Center of Metrology Instrument and System, Baoding 071002, China; 3. New Energy Vehicle Power System Lightweight Technology Innovation Center of Hebei Province, Baoding 071002, China)Abstract: To facilitate rapid identification and detection of colorectal polyps during colonoscopy procedures, a real-time multi-class detection model for colonoscopic polyps based on modified YOLOv5s is proposed. This model utilizes ConvNeXt as thebackbone network and incorporates the SimAM attention mechanism to improve detection performance. Additionally, a slim-neck module based on GSConv is employed in the neck network to reduce network parameters. For model training and testing, a colorectal polyp dataset containing 1 676 images annotated by professional doctors was constructed. The proposed model achieves a mean Average Precision(mAP@0.5)of 83.0% on the test set, which is an improvement- 收稿日期:2024-03-16;修回日期:2024-05-06 基金项目:河北省自然科学基金资助项目(F2023201069);保定市创新能力提升专项项目(2394G027);河北大学研究生创新项目(HBU2024BS021;HBU2024SS011);河北大学科研创新团队项目(IT2023B07);大学生创新创业训练计划创新训练项目(DC2024376;DC2024381) 第一作者:薛林雁(1981—),女,河北大学副教授,主要从事生物医学图像处理方向研究.E-mail: lyxue@hbu.edu.cn 通信作者:杨昆(1976—),男,河北大学教授,博士生导师,主要从事生物医学图像处理方向研究.E-mail: yangkun@hbu.edu.cn第4期薛林雁等:基于改进YOLOv5s的肠镜息肉多分类实时检测方法河北大学学报(自然科学版) 第44卷of 8.4% compared to the model before modification, with a detection speed of 120 frames per second. Moreover,the model exhibits a detection speed exceeding 25 frames per second when deployed on edge devices. The results demonstrate that the improved YOLOv5s meets the clinical requirementsfor real-time and accurate colonoscopy examinations.

Key words: polyps, adenomatous polyps, object detection, YOLOv5s, real-time

中图分类号: