[1] 常福宣, 吴吉春, 戴水汉. 多孔介质溶质运移的分数弥散过程与L(e)vy分布 [J]. 南京大学学报(自然科学版) 2004.doi:10.3321/j.issn:0469-5097.2004.03.003 [2] 孙洪广, 陈文, 蔡行, SUN Hongguang, CHEN Wen, CAI Xing. 空间分数阶导数反常扩散方程数值算法的比较 [J]. 计算物理 2009.doi:10.3969/j.issn.1001-246X.2009.05.011 [3] 王晟, 马正飞, 姚虎卿, WANG Sheng, MA Zhengfei, YAO Huqing. 多孔材料分形扩散模型的Fourier-Bessel级数算法及其应用 [J]. 计算物理 2008.doi:10.3969/j.issn.1001-246X.2008.03.007 [4] 谷文娟, 李功胜, 殷凤兰, 池光胜, GU Wen-juan, LI Gong-sheng, YIN Feng-lan, CHI Guang-sheng. 一个时间分数阶扩散方程的参数反演问题 [J]. 山东理工大学学报(自然科学版) 2010.doi:10.3969/j.issn.1672-6197.2010.06.006 [5] PODLUBNY I. Fractional differential equation [M]. San Diego:academic Press 1999. [6] 王济平. 一维热传导方程不适定问题的解法 [J]. 河北大学学报(自然科学版) 1988, 8(03). [7] J.-L. Battaglia, O. Cois, L. Puigsegur. Solving an inverse heat conduction problem using a non-integer identified model [J]. International Journal of Heat and Mass Transfer 2001, 14(14). [8] Diego A. Murio. Stable numerical solution of a fractional-diffusion inverse heat conduction problem [J]. Computers & Mathematics with Applications: An International Journal 2007, 10(10). [9] Diego A. Murio. Time fractional IHCP with Caputo fractional derivatives [J]. Computers & Mathematics with Applications 2008, 9(9). [10] SIVAPRASAD R, VENKATESHA S, MANOHAR C S. Identification of dynamical systems with fractional derivative damping models using inverse sensitivity analysis [J]. CMC 2009, 298. [11] Jacky Cresson. Inverse problem of fractional calculus of variations for partial differential equations [J]. Communications in nonlinear science and numerical simulation 2010, 4(4). [12] Hui Wei, Wen Chen, Hongguang Sun, Xicheng Li. A coupled method for inverse source problem of spatial fractional anomalous diffusion equations [J]. Inverse Problems in Science & Engineering 2010, 7(7). [13] CANNON J R, LIN Y, XU S. Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations [J]. Inverse Problems 1994, 10. [14] MEHDI D. Finding s control parameter in one-dimensional parabolic equation [J]. Applied Mathematics and Computation 2003, 135. [15] Dehghan M.. Determination of a control function in three-dimensional parabolic equations [J]. Mathematics and computers in simulation 2003, 2(2). [16] MEHDI D. Finite difference schemes for two-dimensional parabolic inverse problem with temperature overspecification [J]. International Journal of Computer Mathematics 2000, 75. [17] Mehdi Dehghan, Mehdi Tatari. Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions [J]. Mathematical and computer modelling 2006, 11/12(11/12). |