河北大学学报(自然科学版) ›› 2017, Vol. 37 ›› Issue (6): 640-651.DOI: 10.3969/j.issn.1000-1565.2017.06.012

• • 上一篇    下一篇

卷积神经网络及其研究进展

翟俊海1,张素芳2,郝璞1   

  • 收稿日期:2017-09-09 发布日期:2017-11-25
  • 通讯作者: 张素芳(1966—),女,河北蠡县人,中国气象局气象干部培训学院河北分院副教授,主要从事机器学习方向研究.E-mail:mczsf@126.com
  • 作者简介:翟俊海(1964—),男,河北易县人,河北大学教授,博士,主要从事机器学习和数据挖掘方向研究. E-mail:mczjh@126.com
  • 基金资助:
    国家自然科学基金资助项目(71371063);河北省自然科学基金资助项目(F2017201026);河北大学自然科学研究计划项目(799207217071)

Convolutional neural network and its research advances

ZHAI Junhai1,ZHANG Sufang2,HAO Pu1   

  1. 1.Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics andInformation Science, Hebei University, Baoding 071002, China; 2.Hebei Branch of MeteorologicalCadres Training Institute, China Meteorological Administration, Baoding 071002, China
  • Received:2017-09-09 Published:2017-11-25

摘要: 深度学习是目前机器学习领域最热门的研究方向,轰动全球的AlphaGo就是用深度学习算法训练的.卷积神经网络是用深度学习算法训练的一种模型,它在计算机视觉领域应用广泛,而且获得了巨大的成功.本文的主要目的有2个:一是帮助读者深入理解卷积神经网络,包括网络结构、核心概念、操作和训练;二是对卷积神经网络的近期研究进展进行综述,重点综述了激活函数、池化、训练及应用4个方面的研究进展.另外,还对其面临的挑战和热点研究方向进行了讨论.本文将为从事相关研究的人员提供很好的帮助.

关键词: 机器学习, 深度学习, 卷积神经网络, 计算机视觉, 训练算法

Abstract: Deep learning is the most popular research topic in the field of machine learning,AlphaGo which overwhelmingly impacts the world is trained with deep learning algorithms.Convolution neural network(CNN)is a model trained with deep learning algorithm,CNN is widely and successfully applied in computer version.The main purpose of this paper includes two aspects:one is to provide readers with some insights into CNN including its architecture,related concepts,operations and its training; the other is to present a comprehensive survey on research advances of CNN,mainly focusing on 4 aspects: activation functions,pooling,training and applications of CNN.Furthermore,the emerging challenges and hot research topics of CNN are also discussed.This paper can be very helpful to researchers in related field.

Key words: machine learning, deep learning, convolutional neural network, computer version, training algorithms

中图分类号: