河北大学学报(自然科学版) ›› 2018, Vol. 38 ›› Issue (1): 1-6.DOI: 10.3969/j.issn.1000-1565.2018.01.001

• •    下一篇

齐次 Rota-Baxter 3-李代数(Ⅰ)

白瑞蒲,亢闯闯,马越,侯帅,巴一   

  • 收稿日期:2017-04-27 出版日期:2018-01-25 发布日期:2018-01-25
  • 作者简介:白瑞蒲(1960—), 女, 河北保定人, 河北大学教授, 博士, 主要从事李群、李代数方向的研究. E-mai:bairuipu@hbu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11371245);河北省自然科学基金资助项目(A2014201006)

Homogeneous Rota-Baxter 3-Lie Algebras(Ⅰ)

BAI Ruipu,KANG Chuangchuang,MA Yue,HOU Shuai,BA Yi   

  1. College of Mathematics and Information Science, Hebei University, Baoding 071002, China
  • Received:2017-04-27 Online:2018-01-25 Published:2018-01-25

摘要: 无限维单3-李代数Aω=∑m∈ZFLm上的齐性Rota-Baxter 算子R 是Aω的Rota-Baxter 算子, 且满足R(Lm)=f(m)Lm, 其中f:Z→F.因为当λ不等于0时,3-李代数的权为λ的 Rota-Baxter 算子 完全由权为 1 的 Rota-Baxter 算子所决定. 因此,本文主要研究了Aω上权为 1且满足|W1|<∞的齐性Rota-Baxter 算子的结构, 并在3-李代数Aω的基底空间 A上利用齐次Rota-Baxter 算子构造了5 类3-代数(A,[,,]j), 并证明了3-李代数(A,[,,]j)都是齐性 Rota-Baxter 3-李代数.

关键词: 3-李代数, 齐性Rota-Baxter 算子, 齐性Rota-Baxter 3-李代数

Abstract: Homogeneous Rota-Baxter operators R on the infinite dimensional simple 3-Lie Algebra Aω=∑m∈ZFLm are Rota-Baxter operators which satisfy R(Lm)=f(m)Lm, where f:Z→Fis a function. Since Rota-Baxter operators of weight λ with λ≠0 on 3-Lie algebras are completely determined by the case λ=1, the homogeneous Rota-Baxter operators of weight 1 on Aω with |W1|<∞ are discussed. Five 3-Lie algebras(A,[,,]j)are constructed by the simple 3-Lie algebra Aω and its homogeneous Rota-Baxter operators.And it is proved that 3-Lie algebras(A,[,,]j)are all homogeneous Rota-Baxter 3-Lie algebras.

Key words: 3-Lie algebra, homogeneous Rota-Baxter operator, homogeneous Rota-Baxter 3-Lie algebra

中图分类号: