[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bulletin of the American Mathematical Society,1936,42(10): 689-693.DOI:10.1090/s0002-9904-1936-06397-4. [2] XU Y.Normal functions and α-normal functions[J].Acta Mathematica Sinica,English Series,2000,16(3): 399-404.DOI:10.1007/s101140000041. [3] LEHTO O,VIRTANEN K I.Boundary behaviour and normal meromorphic functions[J].Acta Mathematica,1957,97: 47-65.DOI:10.1007/bf02392392. [4] LOHWATER A J,POMMERENKE C.On normal meromorphic functions[J].Annales Academiae Scientiarum Fennicae Series A I Mathematica,1973,1973: 1-12.DOI:10.5186/aasfm.1973.550. [5] ARBEL EZ H,HERN NDEZ R,SIERRA W.Normal harmonic mappings[J].Monatshefte Für Mathematik,2019,190(3): 425-439.DOI:10.1007/s00605-018-1235-2. [6] COLONNA F.The Bloch constant of bounded harmonic mappings[J].Indiana University Mathematics Journal,1989,38(4): 829-840.DOI:10.1512/iumj.1989.38.38039. [7] CHEN S,PONNUSAMY S,WANG X.Landaus theorem and Marden constant for harmonic ν-Bloch mappings[J].Bulletin of the Australian Mathematical Society,2011,84(1): 19-32.DOI:10.1017/s0004972711002140. [8] LIU G,PONNUSAMY S.On harmonic ν-Bloch and ν-Bloch-type mappings [J].Results in Mathematics,2018,73(3): 90.DOI:10.1007/s00025-018-0853-2. [9] GARNETT J B.Bounded analytic functions [M].1st edn.New York: Springer,2007: 3-4. [10] HERNA' NDEZ R,MARTI' N M J.Pre-schwarzian and schwarzian derivatives of harmonic mappings[J].The Journal of Geometric Analysis,2015,25(1): 64-91.DOI:10.1007/s12220-013-9413-x. [11] CHUAQUI M,DUREN P,OSGOOD B.The Schwarzian derivative for harmonic mappings[J].Journal dAnalyse Mathématique,2003,91(1): 329-351.DOI:10.1007/bf02788793. [12] LIU G,PONNUSAMY S.Uniformly locally univalent harmonic mappings associated with the pre-Schwarzian norm[J].Indagationes Mathematicae,2018,29(2): 752-778.DOI:10.1016/j.indag.2017.12.006. [13] SCHAUBROECK L E.Subordination of planar harmonic functions[J].Complex Variables,Theory and Application: an International Journal,2000,41(2): 163-178.DOI:10.1080/17476930008815245. |