[1] SHERRARD-SMITH E, HOGAN A B, HAMLET, et al. The potential public health consequences of COVID-19 on malaria in Africa[J]. Nature medicine, 2020, 26(9): 1411-1416. DOI: 10.1038/s41591-020-1025-y. [2] 张一鸣,曹莉,朱建福,等.浙江省德清县1951—2015年疟疾防控效果评价[J/OL].上海预防医学:1-4[2021-05-17].http://kns.cnki.net/kcms/detail/31.1635.R.20210506.1451.012.html. DOI: 10.3969/j.issn.1672-3619.2007.04.026. [3] 欧阳榕,陈朱云,谢汉国,等.2011—2017年福建省输入性疟疾流行态势及防控策略[J].中国人兽共患病学报, 2019, 35(4):359-362. DOI: 10.3969/j.issn.1002-2694.2019.00.038. [4] 孙凌聪,董小蓉,涂珍,等.2017—2019年湖北省疟疾诊断参比实验室病例复核结果分析[J].中国血吸虫病防治杂志, 2020, 32(6):87-90. DOI:10.16250/j.32.1374.2020082. [5] 李素华,李静,高丽君,等.荧光定量PCR在疟疾实验室诊断中的应用[J].中国寄生虫学与寄生虫病杂志, 2019,37(2):232-234 DOI: 10.12140/j.issn.1000-7423.2019.02.021. [6] RIFAIE-GRAHAM O, POLLARD J, RACCIO S, et al. Hemozoin-catalyzed precipitation polymerization as an assay for malaria diagnosis[J]. Nature communications, 2019, 10(1): 1-8. DOI: 10.1038/s41467-019-09122-z. [7] HARRISON T E, MORCH A M, FELCE J H, et al. Structural basis for RIFIN-mediated activation of LILRB1 in malaria[J]. Nature, 2020, 587(7833): 309-312. DOI: 10.1038/S41586-020-2530-3. [8] LOPEZ-PUIGDOLLERS D, TRAVER V J, PLA F. Recognizing white blood cells with local image descriptors[J]. Expert Systems with Applications, 2019, 115: 695-708. DOI: 10.1016/j.eswa.2018.08.029. [9] MARKIEWICZ T, OSOWSKI S, MARIANSKA B. White blood cell automatic counting system based on support vector machine[C] //International Conference on Adaptive and Natural Computing Algorithms, Springer, Berlin, Heidelberg, 2007: 318-326. DOI: 10.1007/978-3-540-71629-7_36. [10] ROSS N E, PRITCHARD C J, RUBIN D M, et al. Automated image processing method for the diagnosis and classification of malaria on thin blood smears[J]. Medical and Biological Engineering and Computing, 2006, 44(5): 427-436. DOI: 10.1007/s11517-006-0044-2. [11] CHEN P H, LIN C J, SCHOLKOPF B. A tutorial on ν‐support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2): 111-136. DOI:10.1002/asmb.537. [12] TEK F B, DEMPSTER A G, KALE I. Parasite detection and identification for automated thin blood film malaria diagnosis[J]. Computer Vision and Image Understanding, 2010, 114(1): 21-32. DOI: 10.1016/j.cviu.2009.08.003. [13] PARK H S, RINEHART M T, WALZER K A, et al. Automated detection of P. falciparum using machine learning algorithms with quantitative phase images of unstained cells[J]. PloS one, 2016, 11(9): e0163045. DOI: 10.1371/journal.pone.0163045. [14] DELAHUNT C B, MEHANIAN C, HU L, et al. Automated microscopy and machine learning for expert-level malaria field diagnosis[C] //2015 IEEE Global Humanitarian Technology Conference(GHTC)Seattle, 2015: 393-399. DOI: 10.1109/GHTC.2015.7344002. [15] MEHANIAN C, JAISWAL M, DELAHUNT C, et al. Computer-automated malaria diagnosis and quantitation using convolutional neural networks[C] //Proceedings of the IEEE International Conference on Computer Vision Workshops. Venice, 2017: 116-125. DOI: 10.1109/ICCVW.2017.22. [16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [17] JIANG B, ZHANG Z, LIN D, et al. Semi-supervised learning with graph learning-convolutional networks[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 11313-11320. DOI: 10.1109/CVPR.2019.01157. [18] LHOSA V, SOKOLNICKI K L, Carpenter A E. Annotated high-throughput microscopy image sets for validation[J]. Nature methods, 2012, 9(7): 637-637. [19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. DOI: abs/1409.1556. [20] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 1-9. DOI: 10.1109/CVPR.2015.7298594. ( |