[1] RIETKERK M, VAN DE KOPPEL J. Regular pattern formation in real ecosystems[J]. Trends Ecol Evol, 2008, 23(3): 169-175. DOI: 10.1016/j.tree.2007.10.013. [2] BASCOMPTE J, SOLÉR V. Rethinking complexity: modelling spatiotemporal dynamics in ecology[J]. Trends Ecol Evol, 1995, 10(9): 361-366. DOI: 10.1016/S0169-5347(00)89134-X. [3] PARROTT L. Measuring ecological complexity[J]. Ecol Indic, 2010, 10(6): 1069-1076. DOI: 10.1016/j.ecolind.2010.03.014. [4] TURING A. The chemical basis of morphogenesis[J]. Bull Math Biol, 1990, 52(1/2): 153-197. DOI: 10.1016/s0092-8240(05)80008-4. [5] GUIN L N, MANDAL P K. Effect of prey refuge on spatiotemporal dynamics of the reaction–diffusion system[J]. Comput Math Appl, 2014, 68(10): 1325-1340. DOI: 10.1016/j.camwa.2014.08.025. [6] PUNITHAN D, KIM D K, MCKAY R. Spatio-temporal dynamics and quantification of daisyworld in two-dimensional coupled map lattices[J]. Ecol Complex, 2012, 12: 43-57. DOI: 10.1016/j.ecocom.2012.09.004. [7] SHAO Y Y, MENG Y, XU X Y. Turing instability and spatiotemporal pattern formation induced by nonlinear reaction cross-diffusion in a predator–prey system with allee effect[J]. Mathematics, 2022, 10(9): 1500. DOI: 10.3390/math10091500. [8] ZHU M, LI J, LIAN X Z. Pattern dynamics of cross diffusion predator–prey system with strong allee effect and hunting cooperation[J]. Mathematics, 2022, 10(17): 3171. DOI: 10.3390/math10173171. [9] GHORAI S, PORIA S. Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity[J]. Chaos Solitons Fractals, 2016, 91: 421-429. DOI: 10.1016/j.chaos.2016.07.003. [10] 黄头生. 基于耦合映像格子的生态学时空复杂性研究[D].北京: 华北电力大学, 2016. [11] SHANG Z C, QIAO Y H. Bifurcation analysis of a Leslie-type predator–prey system with simplified Holling type IV functional response and strong Allee effect on prey[J]. Nonlinear Anal Real World Appl, 2022, 64: 103453. DOI: 10.1016/j.nonrwa.2021.103453. [12] LESLIE P H. Some further notes on the use of matrices in population mathematics[J]. Biometrika, 1948, 35(3/4): 213-245. DOI: 10.1093/biomet/35.3-4.213. [13] GUCKENHEIMER J, HOLMES P, SLEMROD M. Nonlinear oscillations dynamical systems, and bifurcations of vector fields[J]. J Appl Mech, 1984, 51(4): 947. DOI: 10.1115/1.3167759. [14] ZHANG H Y, MA S N, HUANG T S, et al. Complex dynamics on the routes to chaos in a discrete predator-prey system with crowley-martin type functional response[J]. Discrete Dyn Nat Soc, 2018, 2018: 1-18. DOI: 10.1155/2018/2386954. [15] 吕宁.双脉冲阶段结构的种群系统动力学特性[J].山东大学学报(理学版), 2021, 56(12): 100-110. DOI: 10.6040/j.issn.1671-9352.0.2021.179. [16] WEN G L. Criterion to identify Hopf bifurcations in maps of arbitrary dimension[J]. Phys Rev E, 2005, 72(2): 026201. DOI: 10.1103/physreve.72.026201. [17] HAN Y T, HAN B, ZHANG L, et al. Turing instability and wave patterns for a symmetric discrete competitive Lotka-Volterra system[J]. WSEAS Trans Math, 2011, 10(5): 181-189. [18] LU Y, LIU S. Threshold dynamics of a predator-prey model with age-structured prey [J]. Advances in Difference Equations, 2018(1): 164. [19] KANEKO K. Pattern dynamics in spatiotemporal chaos[J]. Phys D Nonlinear Phenom, 1989, 34(1/2): 1-41. DOI: 10.1016/0167-2789(89)90227-3. [20] ZHANG Y Q, HE Y, WANG X Y. Spatiotemporal chaos in mixed linear–nonlinear two-dimensional coupled logistic map lattice[J]. Phys A Stat Mech Appl, 2018, 490: 148-160. DOI: 10.1016/j.physa.2017.07.019. [21] ZHANG Y Q, WANG X Y. Spatiotemporal chaos in mixed linear–nonlinear coupled logistic map lattice[J]. Phys A Stat Mech Appl, 2014, 402: 104-118. DOI: 10.1016/j.physa.2014.01.051. [22] NAGANO S, MAEDA Y. Phase transitions in predator-prey systems[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2012, 85(1): 011915. DOI: 10.1103/PhysRevE.85.011915. [23] LIU J N, QI Q, LIU B, et al. Pest control switching models with instantaneous and non-instantaneous impulsive effects[J]. Math Comput Simul, 2023, 205: 926-938. DOI: 10.1016/j.matcom.2022.10.027. ( |