[1] 赵海波.电力行业大数据研究综述[J].电工电能新技术, 2020, 39(12): 62-72. DOI: 10.12067/ATEEE2004038. [2] NIU R K, LIU J P, ZHANG X L, et al. Research on risk analysis technology of electricity stealing behavior characteristics in smart grid[C] //2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms(EEBDA), Changchun, 2022. DOI: 10.1109/EEBDA53927.2022.9744851. [3] CHANG S, CHAO Y, LI N H. Research and implementation of current detection technology for electricity stealing and omission[C] //2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers(IPEC). Dalian, 2021. DOI: 10.1109/IPEC51340.2021.9421072. [4] XIA X F, XIAO Y, LIANG W, et al. Detection methods in smart meters for electricity thefts: a survey[J]. Proc IEEE, 2022, 110(2): 273-319. DOI: 10.1109/JPROC.2021.3139754. [5] 薛阳,张蓬鹤,杨艺宁,等.基于线损协方差分析的群体性固定比例窃电行为检测方法[J].电力系统自动化, 2022, 46(13): 112-120. DOI: 10.7500/AEPS20210922004. [6] 郑应俊,杨艺宁,舒一飞,等.基于边缘计算的低压用户窃电检测[J].电力系统自动化, 2022, 46(11): 111-120. DOI: 10.7500/AEPS20210624008. [7] 杨森,马文,孙占功,等.一种基于大数据的低压单相用户窃电分析方法[J].电力信息与通信技术, 2022, 20(2): 34-41. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.02.00. [8] 覃华勤,梁叶,钱奇,等.基于典型窃电用户相似性检索的窃电行为检测方法[J].电力系统自动化, 2022, 46(6): 58-65. DOI: 10.7500/AEPS20210616001. [9] 刘康,李彬,薛阳,等.基于传递熵密度聚类的用户窃电识别方法[J].中国电机工程学报, 2022, 42(20): 7535-7545. [10] 唐伟宁,刘颖,于旭,等.基于离群数据挖掘的低压窃电行为辨识方法研究[J].电子设计工程, 2021, 29(23): 56-59, 64. DOI: 10.14022/j.issn1674-6236.2021.23.012. [11] 李春芳,张锐峰,贾璐,等.基于改进k-means算法和大数据分析的新型窃电识别模型与仿真[J].电子设计工程, 2022, 30(22): 84-88. DOI: 10.14022/j.issn1674-6236.2022.22.017. [12] 王安军,韩丽,周亚静.基于用电数据和机器学习的窃电行为识别方法[J].信息技术, 2021, 45(5): 116-121. DOI: 10.13274/j.cnki.hdzj.2021.05.020. [13] 卢峰,丁学峰,尹小明,等.基于样本优化选取的支持向量机窃电辨识方法[J].计算机测量与控制, 2018, 26(6): 223-226. DOI: 10.16526/j.cnki.11-4762/tp.2018.06.057. [14] YANG Y N, SONG R N, XUE Y, et al. A detection method for group fixed ratio electricity thieves based on correlation analysis of non-technical loss[J]. IEEE Access, 2022, 10: 5608-5619. DOI: 10.1109/access.2022.3141610. [15] FURONG Y, QUAN W, BAO Y, et al. Research on identification method of stealing electricity based on data analysis[C] //2021 International Conference on Intelligent Computing, Automation and Systems(ICICAS). Chongqing, 2021. DOI: 10.1109/ICICAS53977.2021.00095. [16] CUI X Y, LIU S Y, LIN Z Z, et al. Two-step electricity theft detection strategy considering economic return based on convolutional autoencoder and improved regression algorithm[J]. IEEE Trans Power Syst, 2022, 37(3): 2346-2359. DOI: 10.1109/TPWRS.2021.3114307. ( |