[1] 张亮亮,张家骅,郝振东,等.Cr3+掺杂的宽带近红外荧光粉及其研究进展[J].发光学报, 2019, 40(12): 1449-1459.DOI: 10.3788/fgxb20194012.1449. [2] 杨秀霞,涂东.近红外应力发光材料研究进展[J].发光学报,2021, 42(2): 136-152. DOI: 10.37188/CJL.20200364. [3] MAO M Q, ZHOU T L, ZENG H T, et al. Broadband near-infrared(NIR)emission realized by the crystal-field engineering of Y3-xCaxAl5-xSixO12:Cr3+(x=0~2.0)garnet phosphors[J]. J Mater Chem C, 2020, 8(6): 1981-1988. DOI: 10.1039/C9TC05775G. [4] SUO H, ZHAO X Q, ZHANG Z Y, et al. Ultra-sensitive optical nano-thermometer LaPO4: Yb3+/Nd3+ based on thermo-enhanced NIR-to-NIR emissions[J]. Chem Eng J, 2020, 389: 124506. DOI: 10.1016/j.cej.2020.124506. [5] WANG X J, ZHU Q, LI J G, et al. La2O2S: Tm/Yb as a novel phosphor for highly pure near-infrared upconversion luminescence[J]. Scr Mater, 2018, 149: 121-124. DOI: 10.1016/j.scriptamat.2018.02.031. [6] YAO L Q, SHAO Q Y, XU X X, et al. Broadband emission of single-phase Ca3Sc2Si3O12: Cr3+/Ln3+(Ln=Nd, Yb, Ce)phosphors for novel solid-state light sources with visible to near-infrared light output[J]. Ceram Int, 2019, 45(11): 14249-14255. DOI: 10.1016/j.ceramint.2019.04.133. [7] 张松涛,王樱蕙,张洪杰.稀土发光材料在近红外二区成像中的应用[J].发光学报, 2020, 41(12): 1460-1478. DOI: 10.37188/CJL.20200340. [8] BAI B, DANG P P, ZHU Z L, et al. Broadband near-infrared emission of La3Ga5GeO14: Tb3+, Cr3+ phosphors: energy transfer, persistent luminescence and application in NIR light-emitting diodes[J]. J Mater Chem C, 2020, 8(34): 11760-11770. DOI: 10.1039/D0TC02498H. [9] ZHANG L L, WANG D D, HAO Z D, et al. Cr3+-doped broadband NIR garnet phosphor with enhanced luminescence and its application in NIR spectroscopy[J]. Adv Opt Mater, 2019, 7(12): 1900185. DOI: 10.1002/adom.201900185. [10] ZENG H T, ZHOU T L, WANG L, et al. Two-site occupation for exploring ultra-broadband near-infrared phosphor—double-perovskite La2MgZrO6: Cr3+[J]. Chem Mater, 2019, 31(14): 5245-5253. DOI: 10.1021/acs.chemmater.9b01587. [11] SHAO Q Y, DING H, YAO L Q, et al. Photoluminescence properties of a ScBO3: Cr3+ phosphor and its applications for broadband near-infrared LEDs[J]. RSC Adv, 2018, 8(22): 12035-12042. DOI: 10.1039/C8RA01084F. [12] LIU G C, MOLOKEEV M S, LEI B F, et al. Two-site Cr3+ occupation in the MgTa2O6: Cr3+ phosphor toward broad-band near-infrared emission for vessel visualization[J]. J Mater Chem C, 2020, 8(27): 9322-9328. DOI: 10.1039/d0tc01951h. [13] WANG Y, WANG Z J, WEI G H, et al. Ultra-Broadband and high efficiency Near-Infrared Gd3ZnxGa5-2xGexO12: Cr3+(x=0~2.0)garnet phosphors via crystal field engineering[J]. Chem Eng J, 2022, 437: 135346. DOI: 10.1016/j.cej.2022.135346. [14] DAI D J, WANG Z J, LIU C J, et al. Lithium substitution endowing Cr3+-doped gallium germanate phosphors with super-broad-band and long persistent near-infrared luminescence[J]. ACS Appl Electron Mater, 2019, 1(12): 2551-2559. DOI: 10.1021/acsaelm.9b00563. [15] WANG J, MA Q Q, WANG Y Q, et al. Recent progress in biomedical applications of persistent luminescence nanoparticles[J]. Nanoscale, 2017, 9(19): 6204-6218. DOI: 10.1039/C7NR01488K. ( |