[1] BAXTER G. An analytic problem whose solution follows from a simple algebraic identity[J].Pacific J Math, 1960, 10: 731-742.DOI:10.2140/pjm.1960.10.731. [2] BAI C,BELLIER O,GUO L,et al. Spliting of operations, Manin products and Rota-Baxter operators[J]. IMRN, 2012, 10: 193-266.DOI:10.1093/imrn/rnr266. [3] CARTIER P. On the structure of free Baxter algebras[J].Adv Math, 1972, 9: 253-265.DOI:10.1016/0001-8708(72)90018-7. [4] EBRAHIMI-FARD K,GUO L,KREIMER D. Spitzer's identity and the algebraic Birkhoff decomposition in pQFT[J]. J Phys A: Math Gen, 2004, 37: 11037-11052.DOI:10.1088/0305-4470/37/45/020. [5] EBRAHIMI-FARD K,GUO L,MANCHON D. Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[J]. Comm Math Phys, 2006, 267: 821-845.DOI:10.1007/s00220-00b-0080-7. [6] BAI R,GUO L,LI Q,WU Y. Rota-Baxter 3-Lie algebras[J]. J Math Phys, 2013,54(6): 3504.DOI:10.1063/1.4808053. [7] BAI C,GUO L,SHENG Y. Bialgebras, the classical Yang-Baxter equation and manin triples for 3-Lie algebras [J/OL].[2017-01-03] ,https:/arxiv.org/:1604.0599v1[math-ph]. [8] BAI R,ZHANG Y. Homogeneous Rota-Baxter operators on 3-Lie algebra Aω[J/OL].Colloq Math, [2017-01-06] ,https://arxiv.org/abs/1512.02261/.DOI:10.4064/cm6829-2-2016. [9] BAI R,ZHANG Y. Homogeneous Rota-Baxter operators on 3-Lie algebra Aω(II)[J/OL].Matp-ph.[2017-01-06] ,https://arxiv.org/abs/. 1615.02252v2.DOI:10.4064/cm7000-4-2017. [10] BAI R,WU Y. Constructions of 3-Lie algebras[J]. Linear and Multilinear Algebra, 2015, 63(11): 2171-2186.DOI:10.1080/03081087.2014.986121. |