[1] FILIPPOV V T. N-Lie algebras[J]. Sib Math J, 1985, 26(6): 879-891. DOI:10.1007/BF00969110. [2] PAPADOPOULOS G. M2-branes, 3-Lie algebras and Plücker relations[J]. J High Energy Phys, 2008(5): 54. DOI:10.1088/1126-6708/2008/05/054. [3] BAGGER J, LAMBERT N. Gauge symmetry and supersymmetry of multiple M2-branes[J]. Phys Rev D, 2008, 77(6): 065008. DOI:10.1103/physrevd.77.065008. [4] 白瑞蒲, 刘培, 张艳. 低维半结合3-代数的分类[J]. 河北大学学报(自然科学版), 2020,40(2): 113-118. DOI: 10.3969/j.issn.1000-1565.2020.02.001. [5] 白瑞蒲,亢闯闯,马越,等.齐性Rota-Baxter 3-李代数[J].河北大学学报(自然科学版),2018,38(1):1-6. DOI:10.3969/j.issn.1000-1565.2018.01.001. [6] BAI R P, LI Z H, WANG W D. Infinite-dimensional 3-Lie algebras and their connections to Harish-Chandra modules[J]. Front Math China, 2017, 12(3): 515-530. DOI:10.1007/s11464-017-0606-7. [7] RINEHART G S. Differential forms on general commutative algebras[J]. Trans Amer Math Soc, 1963, 108(2): 195-222. DOI:10.1090/s0002-9947-1963-0154906-3. [8] HUEBSCHMANN J. Poisson cohomology and quantization[J]. J Für Die Reine Und Angewandte Math Crelles J, 1990(408): 57-113. DOI:10.1515/crll.1990.408.57. [9] CASAS J M, LADRA M, PIRASHVILI T. Triple cohomology of Lie-Rinehart algebras and the canonical class of associative algebras[J]. J Algebr, 2005, 291(1): 144-163. DOI:10.1016/j.jalgebra.2005.05.018. [10] CASAS J M. Obstructions to Lie-Rinehart algebra extensions[J]. Algebra Colloq, 2011, 18(1): 83-104. DOI:10.1142/s1005386711000046. [11] MANDAL A, MISHRA S K. Hom-Lie-Rinehart algebras[J]. Commun Algebr, 2018, 46(9): 3722-3744. DOI:10.1080/00927872.2018.1424865. [12] CASTIGLIONI J L, GARCÍA-MARTÍNEZ X, LADRA M. Universal central extensions of Lie-Rinehart algebras[J]. J Algebra Appl, 2018, 17(7): 1850134. DOI:10.1142/s0219498818501347. [13] BAI R P, LI X J, WU Y L. 3-Lie-Rinehart algebras[EB/OL]. [2021-01-04].https://www.researchgate.net /publication/332109995_3 -Lie-Rinehart_Algebras. ( |