[1] FILIPPOV T. N-Lie algebras[J]. Siberian Mathematics Journal, 1985, 26(6): 126-140. DOI:10.1007/bf00969110. [2] KASYMOV S. Theory of n-Lie algebras[J]. Algebra & Logic, 1987, 26(3): 155-166. DOI:10.1007/BF02009328. [3] 白瑞蒲,亢闯闯,马越,等.齐次Rota-Baxter3-李代数(Ⅰ)[J].河北大学学报(自然科学版), 2018, 38(1):1-6. DOI: 10.39 69/j.issn.1000-1565.2018.01.001. [4] BAI R, GUO L, LI J, et al. Rota-Baxter 3-Lie algebras[J]. Journal of Mathematical Physics, 2013, 54: 063504. DOI:10.106 3/1.4808053. [5] BAI R, ZHANG Y. Homogeneous Rota-Baxter operators on the 3-Lie algebra(II)[J]. Colloquium Mathematicum, 2017,149(2): 193-209. DOI:10.4064/cm7000-4-2017. [6] 白瑞蒲,刘培.3-李代数 T的齐性 Rota-Baxter算子[J].山东大学学报(理学版),2021,56(8):61-66. DOI:10.6040/j.issn.1671-9352.0.2021.097. [7] BAI R, MA Y, KANG C. Structure on the simple canonical Namburota-Baxter 3-lie algebra[J]. BullIran Math Soc, 2019, 45(6):1659-1679. DOI:10.1007/s41980-019-00221-7. [8] BAI R, WU Y. Constructions of 3-Lie algebras[J]. Linear Multilinear Algebra, 2015, 63:2171-2186. DOI:10.1080/03081087. 2014.986121. [9] 白瑞蒲,刘山.无限维齐性Rota-Baxter 3-李代数(Ⅰ)[J].河北大学学报(自然科学版), 2021, 41(6):633-637. DOI:10.396 9/j.issn.1000-1565.2021.06.001. ( |