Journal of Hebei University (Natural Science Edition) ›› 2018, Vol. 38 ›› Issue (3): 239-247.DOI: 10.3969/j.issn.1000-1565.2018.03.003
Previous Articles Next Articles
WEN Xin, DONG Jie, SHE Tiantian, BAI Guoyi
Received:
2018-01-12
Online:
2018-05-25
Published:
2018-05-25
CLC Number:
WEN Xin, DONG Jie, SHE Tiantian, BAI Guoyi. Progress in phenol hydrogenation[J]. Journal of Hebei University (Natural Science Edition), 2018, 38(3): 239-247.
Add to citation manager EndNote|Ris|BibTeX
URL: //xbzrb.hbu.edu.cn/EN/10.3969/j.issn.1000-1565.2018.03.003
[1] ZHONG J W, CHEN J Z, CHEN L M. Selective hydrogenation of phenol and related derivatives[J]. Catalysis Science & Technology, 2014, 4(5): 3555-3569. DOI:10.1039/C4CY00583J. [2] 赵梦思. 高效苯酚选择性加氢催化剂的研究[D].杭州:浙江大学, 2016. ZHAO M S. Selective hydrogenation of phenol over heterogeneous catalysts[D]. Hangzhou:Zhejiang University,2016. [3] MAKOWSKI P, CAKAN R D, ANTONIETTI M, et al. Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon[J]. Chemical Communications, 2008, 0: 999-1001. DOI: 10.1039/B717928F. [4] MATOS J, CORMA A. Selective phenol hydrogenation in aqueous phase on Pd-based catalysts supported on hybrid TiO2-carbon materials. Applied Catalysis A: General, 2011, 404(1-2): 103-112. DOI: 10.1016/j.apcata.2011.07.018. [5] XIANG Y Z, KONG L N, XIE P Y, et al. Carbon nanotubes and activated carbons supported catalysts for phenol in situ hydrogenation: Hydrophobic/hydrophilic effect[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2197-2203. DOI: 10.1021/ie4035253. [6] LIU H Z, JING T, HAN B X, et al. Selective Phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250. DOI: 10.1126/science.1179713. [7] WATANABE S, ARUNAJATESAN V. Influence of acid modification on selective phenol hydrogenation over Pd/activated carbon catalysts[J]. Topics in Catalysis, 2010, 53(15-18): 1150-1152. DOI: 10.1007/s11244-010-9551-3. [8] XU T Y, ZHANG Q F, CHEN J, et al. Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: Role of C, O oxygen species[J]. Applied Surface Science, 2015, 324: 634-639. DOI: 10.1016/j.apsusc.2014.10.165. [9] LI M M, LI Y, JIA L, et al. Tuning the selectivity of phenol hydrogenation on Pd/C with acid and basic media[J]. Catalysis Communications, 2018, 103: 88-91. DOI: 10.1016/j.catcom.2017.09.028. [10] WANG Y, YAO J, LI H R, et al. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J]. Journal of the American Chemical Society, 2011, 133(8): 2362-2365. DOI: 10.1021/ja109856y. [11] FENG G, CHEN P, LOU H. Palladium catalysts supported on carbon-nitrogen composites for aqueous-phase hydrogenation of phenol[J]. Catalysis Science & Technology, 2015, 5(4): 2300-2304. DOI: 10.1039/C4CY01647E. [12] CHEN J Z, ZHANG W, CHEN L M et al. Direct selective hydrogenation of phenol and derivatives over polyaniline-functionalized carbon-nanotube-supported palladium[J]. ChemPlusChem, 2013, 78(2): 142-148. DOI: 10.1002/cplu.201200276. [13] XU G Y, GUO J H, ZHANG Y, et al. Selective hydrogenation of phenol to cyclohexanone over Pd-HAP catalyst in aqueous media[J]. ChemCatChem, 2015, 7(16): 2485-2492. DOI: 10.1002/cctc.201500442. [14] ZHU J F, TAO G H, LIU H Y, et al. Aqueous-phase selective hydrogenation of phenol to cyclohexanone over soluble Pd nanoparticles[J]. Green Chemistry, 2014, 16(5): 2664-2669. DOI: 10.1039/C3GC42408A. [15] CIRTIU C M, DUNLOP-BRIERE A F, MOORES A. Cellulose nanocrystallites as an efficient support for nanoparticles of palladium:Application for catalytic hydrogenation and Heck coupling under mild conditions[J]. Green Chemistry, 2011, 13(2): 288-291. DOI: 10.1039/C0GC00326C. [16] CHENG L, DAI Q G, LI H, et al. Highly selective hydrogenation of phenol and derivatives over Pd catalysts supported on SiO2 and γ-Al2O3 in aqueous media[J]. Catalysis Communications, 2014, 57(57): 23-28. DOI: 10.1016/j.catcom.2014.07.006. [17] ZHANG F W, CHEN S, LI H, et al. Pd nanoparticles embedded in the outer shell of a mesoporous core-shell catalyst for phenol hydrogenation in pure water[J]. RSC Advances, 2015, 5(124): 102811-102817. DOI: 0.1039/C5RA12947H. [18] 张嘉熙, 黄高伟, 张琤, 等. 巯基功能化介孔材料高效锚定钯负载型催化剂的制备及其苯酚加氢催化性能[J]. 催化学报, 2013, 34(8): 1519-1526.DOI:10.1016/S1872-2067(12)60603-2. ZHANG J X, HUANG G W, ZHANG Z,et al. Immobilization of highly active Pd nano-catalysts on functionalized mesoporous silica supports using mercapto groups as anchoring sites and their catalytic performance for phenol hydrogenation[J]. Chinese Journal of Catalysis, 2013, 34(8):1519-1526.DOI:10.1016/S1872-2067(12)60603-2. [19] NELSON N C, MANZANO J S, SADOW A D, et al. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure[J]. ACS Catalysis, 2015, 5(4): 2051-2061. DOI: 10.1021/cs502000j. [20] ZHOU H, HAN B B, SADOW A D, et al. Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media[J]. Green Chemistry, 2017, 19(15): 3585-3594. DOI: 10.1039/C7GC01318C. [21] LIU H L, LI Y W, LUQUE R, et al. A tunable bifunctional water-compatible heterogeneous catalyst for the selective aqueous hydrogenation of phenols[J]. Advanced Synthesis & Catalysis, 2011, 353(17): 3107-3113. DOI: 10.1002/adsc.201100479. [22] ZHANG D M, GUAN Y J, HENSEN E J M, et al. Porous MOFs supported palladium catalysts for phenol hydrogenation: A comparative study on MIL-101 and MIL-53[J]. Catalysis Communications, 2013, 41(21): 47-51. DOI: 10.1016/j.catcom.2013.06.035. [23] ZHANG D M, GUAN Y J, HENSEN E J M, et al. Tuning the hydrogenation activity of Pd NPs on Al-MIL-53 by linker modification[J]. Catalysis Science & Technology, 2014, 4(3):795-802. DOI: 10.1039/C3CY00910F. [24] ERTAS I E, GULCAN M, BUIUT A, et al. Rhodium nanoparticles stabilized by sulfonic acid functionalized metal-organic framework for the selective hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2015,410: 209-220. DOI: 10.1016/j.molcata.2015.09.025. [25] KUKLIN S, MAXIMOV A, ZOLOTUKHONA A, et al. New approach for highly selective hydrogenation of phenol to cyclohexanone: Combination of rhodium nanoparticles and cyclodextrins[J]. Catalysis Communications, 2016, 73: 63-68. DOI: 10.1016/j.catcom.2015.10.005. [26] MAKSIMOV A L, KUKLIN S N, KARDASHEVA Y S, et al. Hydrogenation of phenols in ionic liquids on rhodium nanoparticles[J]. Petroleum Chemistry, 2013, 53(3): 157-163. DOI: 10.1134/S0965544113030043. [27] YANG X, YU X, LONG L Z, et al. Pt nanoparticles entrapped in titanate nanotubes(TNT)for phenol hydrogenation: the confinement effect of TNT[J]. Chemical Communications, 2014, 50(21): 2794-2796. DOI: 10.1039/C3CC49331H. [28] SRINIVAS S T, LSKSHMI L J, RAN P K. Selectivity dependence on the alloying element of carbon supported Pt-alloy catalysts in the hydrogenation of phenol[J]. Applied Catalysis A: General, 1994, 110(2): 167-172. DOI: 10.1016/0926-860X(94)80193-2. [29] ERTAS I E, GULCAN M, BULUT A, et al. Metal-organic framework(MIL-101)stabilized ruthenium nanoparticles: Highly efficient catalytic material in the phenol hydrogenation[J]. Microporous and Mesoporous Materials, 2016, 226: 94-103. DOI: 10.1016/j.micromeso.2015.12.048. [30] GALLETTI A M R, ANTONETTI C, LONGO L, et al. A novel microwave assisted process for the synthesis of nanostructured ruthenium catalysts active in the hydrogenation of phenol to cyclohexanone[J]. Applied Catalysis A: General, 2008, 350(1): 46-52. DOI: 10.1016/j.apcata.2008.07.044. [31] LU F, LIU J, XU J. Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media[J]. Materials Chemistry and Physics, 2008, 108(2-3): 369-374. DOI: 10.1016/j.matchemphys.2007.10.010. [32] MAXIMOV A, ZOIOTUKHINA A, MURZIN V, et al. Ruthenium nanoparticles stabilized in cross-linked dendrimer matrices: Hydrogenation of phenols in aqueous media[J]. ChemCatChem, 2015, 7(7): 1197-1210. DOI: 10.1002/cctc.201403054. [33] 石斌, 成文文, 孔庆洋. 漆原镍催化剂用于苯酚催化加氢[J]. 燃料化学学报, 2015, 43(10): 1252-1257. SHI B, CHENG W W, KONG Q Y. Hydrogenation of phenol over Urushibara Ni catalysts reduced by zinc powder[J].Journal of Fuel Chemistry and Technology, 2015, 43(10):1252-1257. [34] HE J, LU X H, SHEN Y, et al. Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium[J]. Molecular Catalysis, 2017, 440: 87-95. DOI: 10.1016/j.mcat.2017.07.016. [35] ZHANG Q S, LI H F, GAO P, et al. PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives[J]. Chinese Journal of Catalysis, 2014, 35(11): 1793-1799. DOI: 10.1016/S1872-2067(14)60203-5. [36] XIANG Y Z, LI X, LU C S, et al. Reaction performance of hydrogen from aqueous-phase reforming of methanol or ethanol in hydrogenation of phenol[J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3139-3144. DOI: 10.1021/ie101411h. [37] ZHAO C, KASAKOV S, HE J Y, et al. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation[J]. Journal of Catalysis, 2012, 296: 12-23. DOI: 10.1016/j.jcat.2012.08.017. [38] SONG W J, LIU Y S, BARATH E, et al. Synergistic effects of Ni and acid sites for hydrogenation and C-O bond cleavage of substituted phenols[J]. Green Chemistry, 2015, 17(2): 1204-1218. DOI: 10.1039/C4GC01798F. [39] BAI G Y, LI F, FAN X X, et al. Continuous hydrogenation of hydroquinone to 1,4-cyclohexanediol over alkaline earth metal modified nickel-based catalysts[J]. Catalysis Communications, 2012, 17: 126-130. DOI: 10.1016/j.catcom.2011.10.026. [40] 褚晓宁, 牛立博, 陈波. 4-甲氧基环己酮的绿色合成[J]. 精细化工, 2018, 2:134-139.DOI:10.13550/j. jxhg. 2018.02:027. CHU X N, NIU L B, CHEN B, et al. Green synthesis of 4-methoxycyclohexanone[J]. FINE CHEMICALS, 2018, 2:134-139.DOI:10.13550/j. jxhg. 2018.02.027. |
[1] | GE Jiayu, LIANG Haiyan, LIU Dong, LI Chunling, ZHANG Fengquan, ZHAO Qian. Determination of trace bromophenols in water by precolumn derivatization-SPE-GC/MS [J]. Journal of Hebei University(Natural Science Edition), 2022, 42(4): 395-402. |
[2] | BAI Guoyi, NIE Shilin, LI Wenjiong. Regulation of hydrogenation performance of dioctyl phthalate over nickel-based nano-catalysts derived from hydrotalcite [J]. Journal of Hebei University(Natural Science Edition), 2021, 41(5): 503-510. |
[3] | GONG Yichao,LIU Pengyan,LIU Guisui. Research progress on the removal method and mechanism of tetrabromobisphenol A [J]. Journal of Hebei University (Natural Science Edition), 2020, 40(5): 484-493. |
[4] | YIN Jiwei, DU Jie, WANG Xuming, ZHANG Fanghua, LI Xue, LI Wei, ZHANG Honglei. Preparation and adsorption properties of phenolic resin based spherical activated carbon [J]. Journal of Hebei University (Natural Science Edition), 2020, 40(3): 276-282. |
[5] | GAO Jian,SUN Huanran,GUO Hongbin,CHEN Baohua,ZHOU Chengyan. Extraction technology optimization of total polyphenols from Prunus cerasifera by response surface methodology and corresponding anti-inflammatory activity investigation [J]. Journal of Hebei University (Natural Science Edition), 2020, 40(2): 161-170. |
[6] | JIA Congcong,LIU Liyan,WANG Yawen,HAN Yanmei,CHEN Sunshuyan,BAI Jie,YAN Hongyuan. Determination of bisphenol S in thermal paper by ultraviolet spectrophotometry [J]. Journal of Hebei University (Natural Science Edition), 2020, 40(2): 144-150. |
[7] | MA Weiwei, HUANG Hangjun, BI Kaili, LI Yi, WANG Junli. Determination of phenols and antioxidant activity of inflorescence from Scabiosa tschiliensis Grunning [J]. Journal of Hebei University (Natural Science Edition), 2019, 39(6): 637-642. |
[8] | LI Meiting,CHEN Yue,LI Yaru,LI Huaidong,ZHOU Can,CHU Xiaoxue, ZHANG Hongyi. Determination and profiling of seven phenolic acids in wines and beverages by capillary electrophoresis with dynamic pH junction [J]. Journal of Hebei University (Natural Science Edition), 2019, 39(6): 594-604. |
[9] | HAO Na, MA Weiwei, HUANG Hangjun, LI Jianfei, WANG Junli. Chemical constituents and antioxidant activity of Dracocephalum rupestre Hance [J]. Journal of Hebei University (Natural Science Edition), 2018, 38(6): 617-622. |
[10] | HAN Xue, FENG Wenhui, NIE Shilin, LAN Xingwang. Influence of supports on the catalytic activity and stability of NiB nanocatalyst in the hydrogenation of cinnamic acid [J]. Journal of Hebei University (Natural Science Edition), 2018, 38(6): 603-609. |
[11] | LIN Yuxing,XIAO Zefeng,TIAN Birui,HAO Na,WANG Junli. Callus proliferation and accumulation of tea polyphenols of Anji Baicha [J]. Journal of Hebei University (Natural Science Edition), 2017, 37(6): 614-620. |
[12] | WU Jinxia,FAN Junjiao,ZHAO Jingjing,ZHANG Heying. Effect of phenol on antioxidant enzymes activity and isozymes composition of Eisenia foetida [J]. Journal of Hebei University (Natural Science Edition), 2017, 37(2): 155-160. |
[13] | NIU Libo,CHU Xiaoning,ZHANG Miao,CHU Hailong,BAI Guoyi. Preparation of Ni-La@mSiO2 catalyst and its catalytic performance in benzophenone hydrogenation [J]. Journal of Hebei University (Natural Science Edition), 2016, 36(4): 369-373. |
[14] | MA Zhiling, LI Cuicui, WEI Huimian. The properation of waterbone aluminum pigment based on oxidizing of Ni2+ and corrosion inhibition of phosphate [J]. Journal of Hebei University (Natural Science Edition), 2015, 35(1): 34-39. |
[15] | WANG Shu-xiang,WU Qian-qian,DUAN Jie,GUO Shao-bo. Solvent-free Synthesis of 2-Aminothiazoles and 2-Methylthiazoles [J]. Journal of Hebei University (Natural Science Edition), 2010, 30(1): 53-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||