Journal of Hebei University(Natural Science Edition) ›› 2024, Vol. 44 ›› Issue (1): 27-33.DOI: 10.3969/j.issn.1000-1565.2024.01.004
Previous Articles Next Articles
LIU Jingnan, RAN Junxia, WU Kaiyue, WU Jiacun, CHEN Junyu, JIA Pengying
Received:
2022-09-23
Online:
2024-01-25
Published:
2024-03-15
CLC Number:
LIU Jingnan, RAN Junxia, WU Kaiyue, WU Jiacun, CHEN Junyu, JIA Pengying. Three patterns with C4v symmetry formed in argon dielectric barrier discharge with double gaps and their spatiotemporal relevance[J]. Journal of Hebei University(Natural Science Edition), 2024, 44(1): 27-33.
Add to citation manager EndNote|Ris|BibTeX
URL: //xbzrb.hbu.edu.cn/EN/10.3969/j.issn.1000-1565.2024.01.004
[1] LIU D W, ZHANG Y Z, XU M Y, et al. Cold atmospheric pressure plasmas in dermatology: Sources, reactive agents, and therapeutic effects[J]. Plasma Process Polym, 2020, 17(4): 1900218. DOI: 10.1002/ppap.201900218. [2] ZHANG H, ZHANG J S, XU S D, et al. Study on the anticancer effects of a 7 μm sized helium plasma jet on micro-tumors[J]. J Phys D: Appl Phys, 2021, 54(38): 385203. DOI: 10.1088/1361-6463/ac0eb3. [3] XU H, WANG S, SHABAN M, et al. Trans-Stilbene epoxidation by He+O2 atmospheric pressure plasma: epoxidation without oxidant waste stream[J]. Plasma Process Polym, 2020, 17(1): 1900162. DOI: 10.1002/ppap.201900162. [4] MARASCU V, LAZEA-STOYANOVA A, STANCU C, et al. The influence of plasma operation parameters on synthesis process of copper particles at atmospheric pressure[J]. Plasma Process Polym, 2018, 15(1): 1700091. DOI: 10.1002/ppap.201700091. [5] HABIB T, CAIUT J M A, CAILLIER B. Synthesis of silver nanoparticles by atmospheric pressure plasma jet[J]. Nanotechnology, 2022, 33(32): 325603. DOI: 10.1088/1361-6528/ac6528. [6] LI X C, LIU R J, LI X N, et al. Large-scale surface modification to improve hydrophilicity through using a plasma brush operated at one atmospheric pressure[J]. Phys Plasmas, 2019, 26(2): 023510. DOI: 10.1063/1.5063328. [7] WU J C, WU K Y, CHEN J Y, et al. Influence of air addition on surface modification of polyethylene terephthalate treated by an atmospheric pressure argon plasma brush[J]. Plasma Sci Technol, 2021, 23(8): 085504. DOI: 10.1088/2058-6272/ac0109. [8] LIU Z Y, XU J G, ZHU X, et al. Study on discharge characteristics and improving surface hydrophobicity of epoxy resin by nanosecond pulse excited argon/hexamethyldisiloxane jet array[J]. High Volt, 2022, 7(4): 771-781. DOI: 10.1049/hve2.12194. [9] 韩国新,武珈存,贾焓潇,等.平行场刷形等离子体羽的放电特性及其聚合物表面改性[J].河北大学学报(自然科学版), 2023, 43(4): 369-378. DOI: 10.3969/j.issn.1000-1565.2023.04.005. [10] LIU F W, NIE L L, LU X P. On the green aurora emission of Ar atmospheric pressure plasma[J]. Plasma Sci Technol, 2022, 24(5): 055408. DOI: 10.1088/2058-6272/ac52ec. [11] LI X C, WANG B, JIA P Y, et al. Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Sci Technol, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6. [12] WU J C, WU K Y, REN C H, et al. Comparison of discharge characteristics and methylene blue degradation through a direct-current excited plasma jet with air and oxygen used as working gases[J]. Plasma Sci Technol, 2020, 22(5): 055505. DOI: 10.1088/2058-6272/ab6c00. [13] CHEN Z Y, LIU D X, CHEN C, et al. Analysis of the production mechanism of H2O2 in water treated by helium DC plasma jets[J]. J Phys D: Appl Phys, 2018, 51(32): 325201. DOI: 10.1088/1361-6463/aad0eb. [14] LI X C, CHU J D, ZHANG Q, et al. Performance of a large-scale barrier discharge plume improved by an upstream auxiliary barrier discharge[J]. Appl Phys Lett, 2016, 109(20): 204102. DOI: 10.1063/1.4966558. [15] LI X C, BAO W T, JIA P Y, et al. Characteristics of a large gap uniform discharge excited by DC voltage at atmospheric pressure[J]. Chin Phys B, 2014, 23(9): 095202. DOI: 10.1088/1674-1056/23/9/095202. [16] KOGELSCHATZ U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications[J]. Plasma Chem Plasma Process, 2003, 23(1): 1-46. DOI: 10.1023/A:1022470901385. [17] OUYANG J T, LI B, HE F, et al. Nonlinear phenomena in dielectric barrier discharges: pattern, striation and chaos[J]. Plasma Sci Technol, 2018, 20(10): 103002. DOI: 10.1088/2058-6272/aad325. [18] 王朝阳,徐洪志,李彩霞,等.具有调制作用的介质阻挡放电气隙中的超四边形斑图[J].河北大学学报(自然科学版), 2021, 41(2): 140-146. DOI: 10.3969/j.issn.1000-1565.2021.02.005. [19] 王玥,潘宇扬,李耀华,等.介质阻挡放电中带线六边形斑图[J].河北大学学报(自然科学版), 2022, 42(2): 144-149. DOI: 10.3969/j.issn.1000-1565.2022.02.006. [20] LI X C, KANG P C, GAO K, et al. Diffuse and spotted anode layers in an atmospheric pressure glow discharge with a water electrode and miniature argon flow[J]. Plasma Process Polym, 2020, 17(7): 1900223. DOI: 10.1002/ppap.201900223. [21] WU K Y, ZHAO N, NIU Q M, et al. Various concentric-ring patterns formed in a water-anode glow discharge operated at atmospheric pressure[J]. Plasma Sci Technol, 2022, 24(5): 055405. DOI: 10.1088/2058-6272/ac48e1. [22] JIA P Y, GAO K, ZHOU S, et al. Morphology evolution of an atmospheric pressure glow discharge initiated in the air gap between a liquid cathode and a needle anode[J]. Plasma Sources Sci Technol, 2021, 30(9): 095021. DOI: 10.1088/1361-6595/abde51. [23] LI X C, GENG J L, JIA P Y, et al. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap[J]. Phys Plasmas, 2017, 24(11): 113504. DOI: 10.1063/1.5010209. [24] VERREYCKEN T, BRUGGEMAN P, LEYES C. Anode pattern formation in atmospheric pressure air glow discharges with water anode[J]. J Appl Phys, 2009, 105(8): 083312. DOI: 10.1063/1.3117223. [25] GAO K, WU K Y, JIA P Y, et al. Observation of self-organized honeycomb patterns by fast photography in a liquid-anode discharge[J]. Phys Plasmas, 2019, 26(11): 113501. DOI: 10.1063/1.5116063. [26] SHIRAI N, UCHIDA S, TOCHIKUBO F. Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode[J]. Plasma Sources Sci Technol, 2014, 23(5): 054010. DOI: 10.1088/0963-0252/23/5/054010. [27] CALLEGARI T, BERNECKER B, BOEUF J P. Pattern formation and dynamics of plasma filaments in dielectric barrier discharges[J]. Plasma Sources Sci Technol, 2014, 23(5): 054003. DOI: 10.1088/0963-0252/23/5/054003. [28] LI X C, WANG L, RAN J X, et al. Influence of wall charges on discharge characteristics of surface discharge[J]. Chin Phys Lett, 2005, 22(3): 640-643. DOI: 10.1088/0256-307X/22/3/033. [29] MUKAIGAWA S, FUJIWARA K, SATO T, et al. Effect of barrier capacitance on self-organized structure in dielectric-barrier discharge microplasma[J]. Jpn J Appl Phys, 2016, 55(7S2): 07LB04. DOI: 10.7567/jjap.55.07lb04. [30] 韩育宏,贾鹏英,鲍文婷,等.微间隙大气压空气介质阻挡放电模式的转化[J].高电压技术, 2015, 41(2): 572-577. DOI: 10.13336/j.1003-6520.hve.2015.02.033. [31] LI X C, LIU R, JIA P Y, et al. Influence of driving frequency on discharge modes in the dielectric barrier discharge excited by a triangle voltage[J]. Phys Plasmas, 2018, 25(1): 013512. DOI: 10.1063/1.4998615. [32] STAUSS S, MUNEOKA H, EBATO N, et al. Self-organized pattern formation in helium dielectric barrier discharge cryoplasmas[J]. Plasma Sources Sci Technol, 2013, 22(2): 025021. DOI: 10.1088/0963-0252/22/2/025021. [33] ZHANG Y H, NING W J, DAI D, et al. Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Sci Technol, 2019, 21(7): 074003. DOI: 10.1088/2058-6272/ab10a7. [34] CHU H Y, HUANG B S. Gap-dependent transitions of atmospheric microplasma in open air[J]. Phys Plasmas, 2011, 18(4): 043501. DOI: 10.1063/1.3575628. [35] DUAN X X, OUYANG J T, ZHAO X F, et al. Pattern formation and boundary effect in dielectric barrier glow discharge[J]. Phys Rev E, 2009, 80: 016202. DOI: 10.1103/physreve.80.016202. [36] PURWINS H G, BERKEMEIER J. Self-organized patterns in planar low-temperature DC gas discharge[J]. IEEE Trans Plasma Sci, 2011, 39(11): 2116-2117. DOI: 10.1109/TPS.2011.2158558. [37] PURWINS H G. Self-organized patterns in planar low-temperature AC gas discharge[J]. IEEE Trans Plasma Sci, 2011, 39(11): 2112-2113. DOI: 10.1109/TPS.2011.2158557. [38] GUREVICH E L, ASTROV Y A, PURWINS H G. Pattern formation in planar dc-driven semiconductor-gas discharge devices: two mechanisms[J]. J Phys D: Appl Phys, 2005, 38(3): 468-476. DOI: 10.1088/0022-3727/38/3/019. [39] ZANIN A L, GUREVICH E L, MOSKALENKO A S, et al. Rotating hexagonal pattern in a dielectric barrier discharge system[J]. Phys Rev E, 2004, 70(3): 036202. DOI: 10.1103/physreve.70.036202. [40] BERNECKER B, CALLEGARI T, BLANCO S, et al. Hexagonal and honeycomb structures in Dielectric Barrier Discharges[J]. Eur Phys J Appl Phys, 2009, 47(2): 22808. DOI: 10.1051/epjap/2009082. [41] DONG L F, LI B, LU N, et al. Hexagonal superlattice pattern consisting of colliding filament pairs in a dielectric barrier discharge[J]. Phys Plasmas, 2012, 19(5): 052304. DOI: 10.1063/1.4717466. [42] FENG J Y, PAN Y Y, LI C X, et al. Striped superlattice pattern in dielectric barrier discharge[J]. Phys Plasmas, 2020, 27(6): 063516. DOI: 10.1063/1.5145253. [43] DONG L F, FAN W L, HE Y F, et al. Square superlattice pattern in dielectric barrier discharge[J]. Phys Rev E, 2006, 73(6): 066206. DOI: 10.1103/physreve.73.066206. [44] DONG L F, MI Y L, PAN Y Y. Spatio-temporal dynamics and formation mechanism of the square super-lattice pattern with Saturn-like white-eye in dielectric barrier discharge[J]. Phys Plasmas, 2020, 27(2): 023504. DOI: 10.1063/1.5127962. [45] HUANG J Y, PAN Y Y, LIU F C, et al. A dot-line square super-lattice pattern with surface discharge in dielectric barrier discharge[J]. Phys Plasmas, 2018, 25(10): 103503. DOI: 10.1063/1.5027787. [46] SUN H Y, DONG L F, LIU F C, et al. Study on spatiotemporal dynamic and spectral diagnosis of snowflake pattern in dielectric barrier discharge[J]. Phys Plasmas, 2018, 25(11): 113507. DOI: 10.1063/1.5042306. [47] DONG L F, LIU B B, LI C X, et al. Formation of kagome-white-eye-honeycomb hexagonal superlattice pattern in dielectric barrier discharge[J]. Phys Rev E, 2019, 100(6): 063201. DOI: 10.1103/physreve.100.063201. [48] DONG L F, SHANG J, HE Y F, et al. Collective vibration of discharge current filaments in a self-organized pattern within a dielectric barrier discharge[J]. Phys Rev E, 2012, 85(6): 066403. DOI: 10.1103/physreve.85.066403. [49] ZHAO Y, DONG L F, WANG Y J, et al. White-eye hexagonal pattern in dielectric barrier discharge[J]. J Phys Soc Jpn, 2014, 83(12): 124501. DOI: 10.7566/jpsj.83.124501. [50] FU H Y, DONG L F, ZHAO Y, et al. Spot-halo hexagon pattern in dielectric barrier discharge[J]. J Phys Soc Jpn, 2015, 84(4): 044501. DOI: 10.7566/jpsj.84.044501. [51] BOEUF J P, BERNECKER B, CALLEGARI T, et al. Generation, annihilation, dynamics and self-organized patterns of filaments in dielectric barrier discharge plasmas[J]. Appl Phys Lett, 2012, 100(24): 244108. DOI: 10.1063/1.4729767. ( |
[1] | LEI Weiqian,GUO Fenglu,HUANG Tousheng. Chaos and pattern transformation of a spatiotemporal discrete predator-prey system [J]. Journal of Hebei University(Natural Science Edition), 2023, 43(4): 346-356. |
[2] | ZHANG Wenxin, WANG Weiwei, LIU Feng, FAN Zhihui, WANG Jingquan, ZHANG Jinan. Optical and electrical characteristics of a pin-to-plate dielectric barrier discharge [J]. Journal of Hebei University(Natural Science Edition), 2023, 43(1): 35-39. |
[3] | WANG Yue, PAN Yuyang, LI Yaohua, LI Caixia, ZHAO Wei,FU Shaoduo. Pattern of hexagon with line in dielectric barrier discharge [J]. Journal of Hebei University(Natural Science Edition), 2022, 42(2): 144-149. |
[4] | SHEN Ruicai, ZHAI Junhai, HOU Yingzhen. Multi-generator generative adversarial networks [J]. Journal of Hebei University(Natural Science Edition), 2021, 41(6): 734-744. |
[5] | ZHOU Zhixiang, GUO Xue, LIU Fucheng, WANG Xiaofei. Effects of electrode curvature on the nonlinear behaviors of dielectric barrier discharge in cylindrical geometry [J]. Journal of Hebei University(Natural Science Edition), 2021, 41(3): 258-264. |
[6] | ZHANG Kan, LIN Qingqian, LIU Qiqi, WANG Chen, HOU Jianhua. Rhythm of birds activity in winter at airport and the effect of snow cover on bird community [J]. Journal of Hebei University(Natural Science Edition), 2021, 41(2): 171-179. |
[7] | WANG Zhaoyang,XU Hongzhi,LI Caixia,GUO Liting,YU Guanglin. Square superlattice pattern of dielectric barrier discharge gap with modulation effect [J]. Journal of Hebei University(Natural Science Edition), 2021, 41(2): 140-146. |
[8] | CHEN Fengxin, MENG Yanliang, CHEN Mingqing, ZHANG Fengjuan. Distribution pattern and risk analysis of alien invasive animals in China [J]. Journal of Hebei University(Natural Science Edition), 2020, 40(6): 637-646. |
[9] | SU Zehua, GONG Dandan, LIU Renjing, JIA Pengying, PANG Xuexia. A comparative study of bielectrode and triple electrode dielectric barrier discharge at atmospheric pressure [J]. Journal of Hebei University (Natural Science Edition), 2019, 39(3): 235-240. |
[10] | LIU Fucheng, WANG Xiaofei. Numerical simulations of the multi-pulse phenomena in atmospheric-pressure dielectric barrier uniform discharges [J]. Journal of Hebei University (Natural Science Edition), 2018, 38(3): 232-238. |
[11] | YAN Jia,FENG Fan,ZHANG Yongliang,HE Yafeng. Pattern formation induced by subdiffusion in Oregonator model [J]. Journal of Hebei University (Natural Science Edition), 2017, 37(1): 19-23. |
[12] | ZHANG Hao,DONG Lifang,WANG Hao,GAO Xing. Device for surface treatment by plasma [J]. Journal of Hebei University (Natural Science Edition), 2016, 36(4): 358-361. |
[13] | WANG Qian,ZHANG Hao,DONG Lifang,FENG Jianyu,WEI Lingyan. Measurement of plasma parameters in bright and dark dot honeycomb pattern [J]. Journal of Hebei University (Natural Science Edition), 2016, 36(1): 17-20. |
[14] | SHANG Jie. On the luminous pattern with the evolution of discharge power [J]. Journal of Hebei University (Natural Science Edition), 2015, 35(4): 348-353. |
[15] | Hao Zhang, Lifang Dong, Longhu Zhao, Wang Qian. Mutual Influence Between the Adjacent Surface Discharges in a Dielectric Barrier Discharge [J]. Journal of Hebei University (Natural Science Edition), 2015, 35(2): 128-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||