[1] 李招贤.厌恶的神经基础:来自大脑诱发和自发神经活动模式的证据[D].新乡: 新乡医学院, 2021. [2] 黄好,罗禹,冯廷勇,等.厌恶加工的神经基础[J].心理科学进展, 2010, 18(9): 1449-1457. [3] 肖婷炜,董洁,梁飞,等.厌恶情绪与自杀行为的关系[J].心理科学进展, 2023, 31(1): 87-98. DOI: 10.3724/SP.J.1042.2023.00087. [4] OLATUNJI B O, KIM J. Examining reciprocal relations between disgust proneness and OCD symptoms: a four-wave longitudinal study[J]. J Behav Ther Exp Psychiatry, 2024, 82: 101907. DOI: 10.1016/j.jbtep.2023.101907. [5] CULICETTO L, FERRAIOLI F, LUCIFORA C, et al. Disgust as a transdiagnostic index of mental illness: a narrative review of clinical populations[J]. Bull Menninger Clin, 2023, 87(Supplement A): 53-91. DOI: 10.1521/bumc.2023.87.suppA.53. [6] STARK R, SCHIENLE A, WALTER B, et al. Hemodynamic responses to fear and disgust-inducing pictures: an fMRI study[J]. Int J Psychophysiol, 2003, 50(3): 225-234. DOI: 10.1016/s0167-8760(03)00169-7. [7] MCCABE C, ROCHA-REGO V. Investigating the predictive value of functional MRI to appetitive and aversive stimuli: a pattern classification approach[J]. PLoS One, 2016, 11(11): e0165295. DOI: 10.1371/journal.pone.0165295. [8] MOSCARELLO J M, MAREN S. Flexibility in the face of fear: hippocampal-prefrontal regulation of fear and avoidance[J]. Curr Opin Behav Sci, 2018, 19: 44-49. DOI: 10.1016/j.cobeha.2017.09.010. [9] GARRETT A S, MADDOCK R J. Time course of the subjective emotional response to aversive pictures: relevance to fMRI studies[J]. Psychiatry Res, 2001, 108(1): 39-48. DOI: 10.1016/s0925-4927(01)00110-x. [10] 曾庆,郑希付.高低厌恶敏感性个体对不同情绪刺激的注意时程: 来自ERP研究的证据[J].心理与行为研究, 2019, 17(6): 743-749. DOI: 10.3969/j.issn.1672-0628.2019.06.004. [11] YAO Y J, XU D. Unconscious cognitive reappraisal and unconscious expression suppression regulate emotional responses: an ERP study[J]. Curr Psychol, 2024, 43(9): 7772-7784. DOI: 10.1007/s12144-023-04943-0. [12] ALDUNATE N, LóPEZ V, BOSMAN C A. Early influence of affective context on emotion perception: EPN or early-N400?[J]. Front Neurosci, 2018, 12: 708. DOI: 10.3389/fnins.2018.00708. [13] 魏玲,李颖洁,姚旭峰.恐惧和悲伤情绪认知重评过程中的脑电活动差异[J].中国生物医学工程学报, 2021, 40(1): 44-52. DOI: 10.3969/j.issn.0258-8021.2021.01.05. [14] ZHOU F, ZHAO W H, QI Z Y, et al. A distributed fMRI-based signature for the subjective experience of fear[J]. Nat Commun, 2021, 12(1): 6643. DOI: 10.1038/s41467-021-26977-3. [15] SI Y J, JIANG L, TAO Q, et al. Predicting individual decision-making responses based on the functional connectivity of resting-state EEG[J]. J Neural Eng, 2019, 16(6): 066025. DOI: 10.1088/1741-2552/ab39ce. [16] BRANCO D, GONÇALVESÓó F, BADIA S B. A systematic review of international affective picture system(iaps)around the world[J]. Sensors, 2023, 23(8): 3866. DOI: 10.3390/s23083866. [17] 梁铁,张清愉,洪磊,等.一种改进的最大信息系数算法在脑卒中患者的皮质肌功能耦合分析中的应用[J].生物医学工程学杂志, 2021, 38(6): 1154-1162. DOI: 10.7507/1001-5515.202106062. [18] LIANG T, ZHANG Q Y, LIU X G, et al. Time-frequency maximal information coefficient method and its application to functional corticomuscular coupling[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(11): 2515-2524. DOI: 10.1109/TNSRE.2020.3028199. [19] XIA M, WANG J, HE Y. BrainNet Viewer: a network visualization tool for human brain connectomics[J]. PloS one, 2013, 8(7): e68910. DOI: 10.1371/journal.pone.0068910. [20] RUBINOV M, KÖTTER R, HAGMANN P, et al. Brain connectivity toolbox: a collection of complex network measurements and brain connectivity datasets[J]. NeuroImage, 2009, 47: S169. DOI: 10.1016/S1053-8119(09)71822-1. [21] SCHUPP H, CUTHBERT B, BRADLEY M, et al. Brain processes in emotional perception: motivated attention[J]. Cogn Emot, 2004, 18(5): 593-611. DOI: 10.1080/02699930341000239. [22] ALDUNATE N, LóPEZ V, BOSMAN C A. Early influence of affective context on emotion perception: EPN or early-N400?[J]. Front Neurosci, 2018, 12: 708. DOI: 10.3389/fnins.2018.00708. [23] SCHINDLER S, BRUCHMANN M, STRAUBE T. Feature-based attention interacts with emotional picture content during mid-latency and late ERP processing stages[J]. Biol Psychol, 2022, 170: 108310. DOI: 10.1016/j.biopsycho.2022.108310. [24] WHEATON M G, HOLMAN A, RABINAK C A, et al. Danger and disease: electrocortical responses to threat- and disgust-eliciting images[J]. Int J Psychophysiol, 2013, 90(2): 235-239. DOI: 10.1016/j.ijpsycho.2013.08.001. [25] MCCABE C, ROCHA-REGO V. Investigating the predictive value of functional MRI to appetitive and aversive stimuli: a pattern classification approach[J]. PloS One, 2016, 11(11): e0165295. DOI: 10.1371/journal.pone.0165295. [26] LI Z, LI Y, LI X, et al. The spontaneous brain activity of disgust: perspective from resting state fMRI and resting state EEG[J]. Behav Brain Res, 2021, 403: 113135. DOI: 10.1016/j.bbr.2021.113135. [27] MOSCARELLO J M, MAREN S. Flexibility in the face of fear: hippocampal-prefrontal regulation of fear and avoidance[J]. Curr Opin Behav Sci, 2018, 19: 44-49. DOI: 10.1016/j.cobeha.2017.09.010. [28] SHAHABI H, MOGHIMI S. Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity[J]. Comput Hum Behav, 2016, 58: 231-239. DOI: 10.1016/j.chb.2016.01.005. [29] LIM J, KURNIANINGSIH Y A, ONG H H, et al. Moral judgment modulation by disgust priming via altered fronto-temporal functional connectivity[J]. Sci Rep, 2017, 7(1): 10887. DOI: 10.1038/s41598-017-11147-7. [30] RUBINOV M, SPORNS O. Complex network measures of brain connectivity: Uses and interpretations[J]. Neuroimage, 2010, 52(3): 1059-1069. DOI: 10.1016/j.neuroimage.2009.10.003. ( |