[1] 韩国新,武珈存,贾焓潇,等.平行场刷形等离子体羽的放电特性及其聚合物表面改性[J]. 河北大学学报(自然科学版), 2023, 43(4): 369. DOI: 10. 3969/j.issn.1000-1565. 2023.04.005. [2] LI H, LI M L, ZHU H C, et al. Realizing high efficiency and large-area sterilization by a rotating plasma jet device[J]. Plasma Sci Technol, 2022, 24(4): 045501. DOI:10.1088/2058-6272/ac550d. [3] HEINKE R, ARNOLD T, EHRHARDT M, et al. Influence of fluence and pulse number on laser cleaning of atmospheric-pressure-plasma-jet-etched optical glasses[J]. Phys Status Solidi A, 2024, 221(15): 2300485. DOI:10.1002/pssa.202300485. [4] PALMA D, RICHARD C, MINELLA M. State of the art and perspectives about non-thermal plasma applications for the removal of PFAS in water[J]. Chem Eng J Adv, 2022, 10: 100253. DOI:10.1016/j.ceja.2022.100253. [5] JIN Y, REN C S, YANG L, et al. Atmospheric pressure plasma jet in Ar and O2/Ar mixtures: Properties and high performance for surface cleaning[J]. Plasma Sci Technol, 2013, 15(12): 1203-1208. DOI:10.1088/1009-0630/15/12/08. [6] 李雪辰,陈俊宇,贾鹏英,等.外加电压参数对大气压等离子体射流形貌的影响[J].河北大学学报(自然科学版), 2021, 41(5): 495-502. DOI:10.3969/j.issn.1000-1565.2021.05.006. [7] ZHANG X Y, CHEN L, GUAN T Y, et al. Experimental study on the influence of gas flow rate on the plasma plume of N-APPJ[J]. Phys Scr, 2024, 99(2): 025606. DOI:10.1088/1402-4896/ad1963. [8] JIA P Y, HAN G X, DONG X P, et al. Influence of bias voltage and oxygen addition on the discharge aspects of a diffuse argon plume in an atmospheric pressure plasma jet[J]. Plasma Sci Technol, 2024, 26(12): 125402. DOI:10.1088/2058-6272/ad73ab. [9] 武珈存,孙换霞,冉俊霞,等,大气压氩气射流的放电模式及激光汤姆逊散射诊断研究[J/OL].中国科学:物理学 力学 天文学,1-10[2025-5-25].https://link.cnki.net/urlid/11.5848.N.20250521.0953.018. DOI: 10.1360/SSPMA-2025-0076. [10] WANG T, WANG S Q, WANG J H, et al. Effect of electrode configurations on the characteristics of the ring-ring typed atmospheric pressure plasma jet and its modification on polymer film[J]. Plasma Processes polym, 2022, 19(2): 2100139. DOI: 10.1002/ppap.202100139. [11] NIE Q Y, REN C S, WANG D Z, et al. A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure[J]. Appl Phys Lett, 2008, 93(1). DOI: 10.1063/1.2956411. [12] WU K Y, CHEN M, RAN J X, et al. A planar plume array emanating from an atmospheric pressure argon plasma jet employing floating electrodes[J]. Phys Plasmas, 2024, 31(9): 093505. DOI:10.1063/5.0222875. [13] HU J T, WANG J G, LIU X Y, et al. Effect of a floating electrode on a plasma jet[J]. Phys Plasmas, 2013, 20(8): 083516. DOI:10.1063/1.4817954. [14] 郝致远,高博,吴波,等.基于锥形管的环-板电极结构大气压等离子体射流特性[J].高电压技术, 2014, 40(10): 3098-3104. DOI:10.13336/j.1003-6520.hve.2014.10.022. [15] CHEN X, WANG, ZHANG, et al. Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries[J]. Chin Phys B, 2023, 32(11): 115201. DOI:10.1088/1674-1056/ace768. [16] XU G, LIU J, YAO C, et al. Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells[J]. Phys Plasmas, 2017, 24(8): 083504. DOI:10.1063/1.4994552. [17] ROBERT E, DARNY T, DOZIAS S, et al. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays[J]. Phys Plasmas, 2015, 22(12): 122007. DOI:10.1063/1.4934655. [18] WILDE N D, XU H F, GOMEZ-VEGA N, et al. A model of surface dielectric barrier discharge power[J]. Appl Phys Lett,2021, 118(15): 154102. DOI:10.1063/5.0043339. [19] NIKIFOROV A,CHEN Z. Atmospheric pressure plasma-from diagnostics to applications[M].London: Intechopen, 2018. [20] MARIOTTI D, SHIMIZU Y, SASAKI T, et al. Gas temperature and electron temperature measurements by emission spectroscopy for an atmospheric microplasma[J]. J Appl Phys, 2007, 101(1): 013307. DOI:10.1063/1.2409318. [21] KIM J S, CHOI J, HONG Y J, et al. Sn etching of extreme ultraviolet(EUV)mirror surface using Ar-H2 atmospheric pressure arc plasma jet[J]. Plasma Chem Plasma Process, 2023, 43(5): 975-990. DOI:10.1007/s11090-023-10340-z. [22] ZHU X M, PU Y K. A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: Kinetics of Paschen 1s and 2p levels[J]. J Phys D: Appl Phys, 2010, 43(1): 015204. DOI:10.1088/0022-3727/43/1/015204. [23] HONG Y, NIU J H, PAN J, et al. Electron temperature and density measurement of a dielectric barrier discharge argon plasma generated with tube-to-plate electrodes in water[J]. Vacuum, 2016, 130: 130-136. DOI:10.1016/j.vacuum.2016.05.012. [24] NIEMI K, REUTER S, GRAHAM L M, et al. Diagnostic based modelling of radio-frequency driven atmospheric pressure plasmas[J]. J Phys D: Appl Phys, 2010, 43(12): 124006. DOI:10.1088/0022-3727/43/12/124006. [25] LIU F, SHAN R K, WANG W W, et al. Enhanced performance of atmospheric pressure plasma jets in a DBD by an internal floating electrode inducing optimal local electric field[J]. J Appl Phys, 2025, 138(11): 113303. DOI:10.1063/5.0281124. [26] SADEGHI N, SETSER D W, FRANCIS A, et al. Quenching rate constants for reactions of Ar(4p [1/2] , 4p [1/2] , 4p [3/2] 2, and 4p [5/2] 2)atoms with 22 reagent gases[J]. J Chem Phys, 2001, 115(7): 3144-3154. DOI:10.1063/1.1388037. [27] WANG W W, LIU F, WANG X, et al. Study on electron temperature in an ablative pulsed plasma thruster by optical emission spectroscopy[J]. EPL-Europhys Lett, 2013, 101(5): 55001. DOI:10.1209/0295-5075/101/55001. [28] DASGUPTA A, BLAHA M, GIULIANI J L. Electron-impact excitation from the ground and the metastable levels of Ar I[J]. Phys Rev A, 1999, 61(1): 012703. DOI:10.1103/physreva.61.012703. ( |