[1] ZILLE A, OLIVEIRA F R, SOUTO A P. Plasma treatment in textile industry[J]. Plasma Process Polym, 2015, 12(2):98-131. DOI:10.1002/ppap. 201400052. [2] HIMMA N F, ANISAH S, PRASETYA N, et al. Advances in preparation, modification, and application of polypropylene membrane[J]. J Polym Eng, 2016, 36(4):329-362. DOI:10. 1515/polyeng-2015-0112. [3] FIGUEROA-PINOCHET M F, CASTRO-ALIJA M J, TIWARI B K, et al. Dielectric barrier discharge for solid food applications[J]. Nutrients, 2022, 14(21):4653. DOI:10.3390/nu14214653. [4] JIN S, WANG S, ZHAO K, et al. A high-drive-performance microsecond pulse power module for portable DBD plasma source device[J]. IEEE Trans Power Electron, 2023. DOI:10.1109/TPEL.2023.3315524. [5] DIMITRAKELLIS P, FAUBERT F, WARTEL M, et al. Plasma surface modification of epoxy polymer in air DBD and gliding arc[J]. Process, 2022, 10(1):104. DOI:10.3390/pr10010104. [6] SHAKERINASAB E, SOHBATZADEH F. Surface modification of dielectric materials by Ar/toluene DBD plasma for flotation and drag reduction[J]. Appl Phys A, 2023, 129(12):1-19. DOI:10.1007/s00339-023-07121-y. [7] SAWANGRAT C, THIPCHAI P, KAEWAPAI K, et al. Surface modification and mechanical properties improvement of bamboo fibers using dielectric barrier discharge plasma treatment[J]. Polym, 2023, 15(7):1711. DOI:10.3390/polym15071711. [8] WARDANI A K, ARIONO D, SUBAGJO, et al. Hydrophilic modification of polypropylene ultr-afiltration membrane by airassisted polydopamine coating[J]. Polym Adv Technol, 2019, 30(4):1148-1155. DOI:10. 1002/pat. 4549. [9] VAN DEYNSE A, DE GEYTER N, LEYS C, et al. Influence of water vapor addition on the surface modification of polyethylene in an argon dielectric barrier discharge[J]. Plasma Process Polym, 2014, 11(2):117-125. DOI:10. 1002/ppap. 201300088. [10] LIU K, LEI J, ZHENG Z, et al. The hydrophilicity improvement of polytetrafluoroethylene by Ar plasma jet: The relationship of hydrophilicity, ambient humidity and plasma parameters[J]. Appl Surf Sci, 2018, 458:183-190. DOI:10. 1016/j. apsusc. 2018. 07. 061. [11] KEHRER M, DUCHOSLAV J, HINTERREITER A, et al. Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures[J]. Surf Coat Technol, 2020, 384:125170. DOI:10. 1016/j. surfcoat. 2019. 125170. [12] YUAN H, WANG W, YANG D, et al. Hydrophilicity modification of aramid fiber using a linear shape plasma excited by nanosecond pulse[J]. Surf Coat Technol, 2018, 344:614-620. DOI:10.1016/j.surfcoat.2018.03.057. [13] ZHU X, LI F, GUAN X, et al. Uniform-saturation modification for hydrophilicity improvement of large-scale PET by plasma-electrified treatment[J]. Eur Polym J, 2022, 181:111656. DOI:10.1016/j.eurpolymj.2022.111656. [14] JIA P, JIA H, RAN J, et al. Efficient hydrophilicity improvement of titanium surface by plasma jet in micro-hollow cathode discharge geometry[J]. Chinese Phys B, 2023, 32(8):085202. DOI:10.1088/1674-1056/acbde9. [15] 董丽芳,李树锋,刘富成,等.介质阻挡放电中气流对放电特性的影响[J].北京理工大学学报, 2005,(Suppl.1):8-10. DOI:10. 3969/j. issn. 1001-0645. 2005. z1. 003. [16] 郝雅娟,董丽芳,刘富成,等.介质阻挡放电中放电丝的准粒子行为[J].河北大学学报(自然科学版), 2007, 27(1):28-31. DOI:10. 3969/j. issn. 1000-1565. 2007. 01. 010. [17] LI X, LIU R, LI X, et al. Large-scale surface modification to improve hydrophilicity through using a plasma brush operated at one atmospheric pressure[J]. Phys Plasmas, 2019, 26(2): 023510. DOI:10.1063/1.5063328. [18] WU J, WU K, CHEN J, et al. Influence of air addition on surface modification of polyethylene terephthalate treated by an atmospheric pressure argon plasma brush[J]. Plasma Sci Technol, 2021, 23(8):085504. DOI:10.1088/2058-6272/ac0109. [19] ADAM N K. Use of the term ‘Young’s equation’ for contact angles[J].Nature, 1957, 180(4590):809-810. DOI:10. 1038/180809a0. [20] LIU F, WANG Y, WANG W, et al. Generation of the high power by a coaxial dielectric barrier discharge with a perforated electrode in atmospheric pressure air[J]. Phys Plasmas, 2023, 30(9):093508. DOI:10.1063/5.0160137. ( |