[1] WANG H F, TSAUT R C.Insight of a fuzzy regression model[J].Fuzzy Sets and Systems, 2000, 112(3): 355-369.DOI: 10.1016/S0165-0114(97)00375-8. [2] KIMURA D, NII M, YAMAGUCHI T, et al.Fuzzy nonlinear regression analysis using fuzzified neural networks for fault diagnosis of chemical plants[J].Journal of Advanced Computational Intelligence and Intelligent Informatics, 2011, 15(3): 336-344.DOI: 10.20965/jaciii.2011.p0336. [3] GONZALEZ-GONZALEZ D S, PRAGA-ALEJO R J, CAN-SIFUENTES M, et al.A non-linear fuzzy regression for estimating reliability in a degradation process[J].Applied Soft computing, 2014, 16: 137-147.DOI: 10.1016/j.asoc.2013.11.019. [4] LIU Y Y, ZHOU J, CHEN Y Z.Using fuzzy non-linear regression to identify the degree of compensation among customer requirements in QFD[J].Neurocomputing, 2014, 142: 115-124.DOI: 10.1016/j.neucom.2014.01.053. [5] WANG X Z.Learning from big data with uncertainty[J].Journal of Intelligent & Fuzzy Systems, 2015, 28(5): 2329-2330. [6] ISHIBUCHI H, TANAKA H.Fuzzy regression analysis using neural networks[J].Fuzzy Sets and Systems, 1992,50(3):257-265.DOI: 10.1016/0165-0114(92)90224-R. [7] RUMELHART D E, HINTON G E, WILLIAMS R J.Learning representations by back-propagating errors[J].Nature, 1986, 323: 533-536.DOI: 10.1038/323533a0. [8] ISHIBUCHI H, TANAKA H.An architecture of neural networks with interval weights and its application to fuzzy regression analysis[J].Fuzzy Sets and Systems, 1993, 57(1): 27-39.DOI: 10.1016/0165-0114(93)90118-2. [9] ISHIBUCHI H, KWON K, TANAKA H.A learning algorithm of fuzzy neural network with triangular fuzzy weights[J].Fuzzy Sets and Systems, 1995, 71(3): 277-293.DOI: 10.1016/0165-0114(94)00281-B. [10] CHENG C B, LEE E S.Fuzzy regression with radial basis function network[J].Fuzzy Sets and Systems, 2001, 119(2): 291-301.DOI: 10.1016/S0165-0114(99)00098-6. [11] ZHANG D, DENG L F, CAI K Y, et al.Fuzzy nonlinear regression with fuzzified radial basis function network[J].IEEE Transactions on Fuzzy Systems, 2005, 13(6): 742-760.DOI: 10.1109/TFUZZ.2005.859307. [12] HE Y L, WANG X Z, HUANG Z X.Fuzzy nonlinear regression analysis using a random weight network[J].Information Sciences, 2016,364-365: 222-240.DOI: 10.1016/j.ins.2016.01.037. [13] SCHMIDT W F, KRAAIJVELD M A, DUIN RPW.Feedforward neural networks with random weights[C].Proceedings of 11th IAPR International Conference on Pattern Recognition, Conference B: Pattern Recognition Methodology and Systems, II, Netherlands: IEEE, 1992,1-4.DOI: 10.1109/ICPR.1992.201708. [14] PAO Y, TAKEFUJI Y.Functional-link computing: Theory, system architecture, and functionalities[J].Computer, 1992, 3: 76-79.DOI: 10.1109/2.144401. [15] HUANG G B, SIEW C.Extreme learning machine: RBF network case[Z]. The 8th International Conference on Control, Automation, Robotics and Vision, Xiamen, 2004. [16] HUANG G B, ZHU Q Y, SIEW C.Extreme learning machine: theory and application[J].Neurocomputing, 2006,70(1-3):489-501.DOI: 10.1016/j.neucom.2005.12.126. [17] CAO F L, TAN Y P, CAI M M.Sparse algorithms of random weight networks and applications[J].Expert Systems with Applications, 2014, 41(5): 2457-2462.DOI: 10.1016/j.eswa.2013.09.045. [18] CAO F L, YE H L, WANG D H.A probabilistic learning algorithm for robust modeling using neural networks with random weights[J].Information Sciences, 2015, 313: 62-78.DOI: 10.1016/j.ins.2015.03.039. [19] 刘彦奎,陈艳菊,刘颖,等.模糊优化方法与应用[M].北京:科学出版社,2013. [20] LIU B D, LIU Y K.Expected value of fuzzy variable and fuzzy expected value models[J].IEEE transactions on Fuzzy Systems,2002, 10(4): 445-450. [21] CAMPOS L, GONZALEZ A.A subjective approach for ranking fuzzy numbers[J].Fuzzy Sets and Systems, 1989,29(2):145-153. [22] DUBOIS D, PRADE H.The mean value of a Fuzzy number[J].Fuzzy Sets and Systems, 1987, 24(3): 279-300.DOI: 10.1016/0165-0114(87)90028-5. [23] GONZALEZ A.A study of the ranking function approach through mean values[J].Fuzzy Sets and Systems, 1990, 35: 29-41.DOI: 10.1016/0165-0114(90)90016-Y. [24] HEILPERN S.The expected value of a fuzzy number[J].Fuzzy Sets and Systems, 1992, 47(1): 81-86.DOI: 10.1016/0165-0114(92)90062-9. [25] YAGER R.A procedure for ordering fuzzy subsets of the unit interval[J].Information Sciences,1981, 24(1): 143-161.DOI: 10.1016/0020-0255(81)90017-7. |