河北大学学报(自然科学版) ›› 2018, Vol. 38 ›› Issue (5): 509-516.DOI: 10.3969/j.issn.1000-1565.2018.05.010
贺学礼,强薇,赵丽莉
收稿日期:
2017-09-13
出版日期:
2018-09-25
发布日期:
2018-09-25
作者简介:
贺学礼(1964—),男,陕西蒲城人,河北大学教授,博士生导师,主要从事植物多样性和生态学研究. E-mail:xuelh1256@aliyun.com
基金资助:
HE Xueli, QIANG Wei, ZHAO Lili
Received:
2017-09-13
Online:
2018-09-25
Published:
2018-09-25
摘要: 从AM真菌遗传多样性的表现、影响因素、维持机制、重要意义等方面系统综述了近年来AM真菌多样性领域的研究进展,并对本领域未来发展和应用前景进行了展望,以期为全面认识和利用AM真菌遗传多样性提供依据.
中图分类号:
贺学礼,强薇,赵丽莉. 丛枝菌根真菌遗传多样性影响因素和维持机制研究进展[J]. 河北大学学报(自然科学版), 2018, 38(5): 509-516.
HE Xueli, QIANG Wei, ZHAO Lili. Influencing factors and mechanism of genetic diversity of arbuscular mycorrhizal fungi[J]. Journal of Hebei University (Natural Science Edition), 2018, 38(5): 509-516.
[1] REDECKER D, MORTON J B, BRUNS T D. Ancestral lineages of arbuscular mycorrhizal fungi(Glomales)[J]. Molecular Phylogenetics and Evolution, 2000, 14(2): 276. DOI: 10.1006/mpev.1999.0713. [2] SCHUBLER A, SCHWARZOTT D, WALKER C. A new fungal phylum, the Glomeromycota: phylogeny and evolution[J]. Mycological Research, 2001,105(12):2780-2786. DOI: 10.1017/S0953756201005196. [3] 贺学礼, 郭辉娟, 王银银. 土壤水分和AM真菌对沙打旺根际土壤理化性质的影响[J]. 河北大学学报(自然科学版), 2013, 33(5):508-513. DOI: 10.3969/j.issn.1000-1565.2013.05.012. HE X L,GUO H J,WANG Y Y. Effects of soil moisture and AM fungi on the soil physicochemical property in the rhizos phere of Astragalus adsurgens[J].Journal of Hebei University(Natural Science Edition), 2013, 33(5):508-513. DOI: 10.3969/j.issn.1000-1565.2013.05.012. [4] 贺学礼, 张亚娟, 赵丽莉, 等. 塞北梁地沙蒿根围AM真菌和球囊霉素空间分布特征[J]. 河北大学学报(自然科学版), 2018,38(3): 268-277. DOI: 10.3969/j.issn.1000-1565.2018.03.007. HE X L,ZHANG Y J,ZHAO L L,et al. Spatial distribution of arbuscular mycorrhizal fungi and glomalin under Artemisia sphaerocephala along a dune in Saibei desert of North China[J]. Journal of Hebei University(Natural Science Edition), 2018,38(3): 268-277. DOI: 10.3969/j.issn.1000-1565.2018.03.007. [5] 贺学礼,刘媞,赵莉莉.接种丛枝菌根对不同施氮水平下黄芪生理特性和营养成分的影响[J].应用生态学报, 2009, 20(9): 2118-2122. DOI: 10.13287/j.1001-9332.2009.0375. HE X L, LIU T, ZHAO L L. Effects of inoculating AM fungi on physiological characters and nutritional components of Astragalus membranaceus under different N application levels[J]. Chinese Journal of Applied Ecology, 2009,20(9): 2118-2122. DOI: 10.13287/j.1001-9332.2009.0375. [6] WRIGHT S F, UPADHYAYA A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198: 97-107. DOI: 10.1023/A:1004347701584. [7] NICHOLS K A, WRIGHT S F. Contributions of soil fungi to organnic matter in argricultural soils[M] //MAGDOFF F,WELL R. In Functions and Management of Soil Organic Matter in Agroecosystems, Florida:CRC Press, 2004:179-198. [8] DRIVER J D, HOLBEN W E, RILLING M C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2005, 37(1): 101-106. DOI: 10.1016/j.soilbio.2004.06.011. [9] LANFRANCO L, YOUNG J P. Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi[J]. Current Opinion in Plant Biology, 2012, 15(4): 454-461. DOI: 10.1016/j.pbi.2012.04.003. [10] HOSNY M, GIANINAZZI-PEARSON V, DULIEU H. Nuclear DNA content of 11 fungal species in Glomales[J]. Genome, 1998, 41(3): 422-428. DOI: 10.1139/gen-41-3-422. [11] HIJRI M, SANDERS I R. Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei[J]. Nature, 2005, 433: 160-163. DOI: 10.1038/nature03069. [12] CORRADI N, CROLL D, COLARD A, et al. Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population[J]. Applied and Environmental Microbiology, 2007, 73: 366-369. DOI: 10.1128/AEM.01574-06. [13] LOYD-MACGILP S A, CHANBERS S M, DODD J C, et al. Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi[J]. New Phytologist, 1996, 133: 103-111. DOI: 10.1111/j.1469-8137.1996.tb04346.x. [14] KUHN G, HIJRI M, SANDERS I R. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi[J]. Nature, 2001, 414: 745–748. DOI: 10.1038/414745a. [15] EHINGER M O, CROLLD, KOCH A M, et al. Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations[J]. New Phytologist, 2012, 196(3): 853-861. DOI: 10.1111/j.1469-8137.2012.04278.x. [16] ANTONIOLLI Z I, SCHACHTMAN D P, OPHEL-KELLER K, et al. Variation in rDNA ITS sequences in Glomus mosseae and Gigaspora margarita spores from a permanent pasture[J]. Mycological Research, 2000, 104: 708-715. DOI: 10.1017/S0953756299001860. [17] PAWLOWSKA T E, TAYLOR J W. Organization of genetic variation in individuals of arbuscular mycorrhizal fungi[J]. Nature, 2004, 427: 733-737. DOI: 10.1038/nature02290. [18] VANDENKOORNHUYSE P, RIDGWAY K P, WATSON I J, et al. Co-existing grass species have distinctive arbuscular mycorrhizal communities[J]. Molecular Ecology, 2003, 12: 3085- 3095. DOI: 10.1046/j.1365-294X.2003.01967.x. [19] SCHEUBLINT R, RIDGWAY K P, YOUNG J P W, et al. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities[J]. Applied and Environmental Microbiology, 2004, 70: 6240- 6246. DOI: 10.1128/AEM.70.10.6240-6246.2004. [20] 刘润进, 焦惠, 李岩, 等. 丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2009, 20(9):2301-2307. DOI:10.13287/j.1001-9332.2009.0360. LIU R J, JIAO H, LI Y, et al. Research advances in species diversity of arbuscular mycorrhlzal fungi[J]. Chinese Journal of Applied Ecology, 2009, 20(9):2301-2307. DOI:10.13287/j.1001-9332.2009.0360. [21] KOCH A M, CROLL D, SANDERS I R. Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth[J]. Ecology Letters, 2006, 9: 103- 110. DOI: 10.1111/j.1461-0248.2005.00853.x. [22] CROLL D, WILLE L, GAMPER H A, et al. Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices[J].New Phytologist, 2007, 178(3): 672. DOI: 10.1111/j.1469-8137.2008.02381.x. [23] CHEN L, ZHENG Y, GAO C, et al. Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest[J]. Molecular Ecology, 2017,26(9):2563-2575. DOI: 10.1111/mec.14061 [24] PARDO J M. Biotechnology of water and salinity stress tolerance[J]. Current Opinion in Biotechnology, 2010, 21:185- 196. DOI: 10.1016/j.copbio.2010.02.005. [25] WEIS E, BERRY J A. Plants and high temperature stress[J]. Symposia of the Society for Experimental Biology, 1988, 42(42):329-346. [26] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1):651. DOI: 10.1146/annurev.arplant.59.032607.092911. [27] HINSINGER P, PLASSARD C, TANG C, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant and Soil, 2003, 248(1):43-59. DOI: 10.1023/A:1022371130939. [28] BORRIELLO R, BERRUTI A, LUMINI E, et al. Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore(Italy)sites[J]. Mycorrhiza, 2015, 25:253- 265. DOI: 10.1007/s00572-014-0605-4. [29] KLABI R, BELL T H, HAMEL C, et al. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland[J]. FEMS Microbiology Ecology, 2015, 91:1- 13. DOI: 10.1093/femsec/fiu015. [30] XU W M, LIU L, HE T H, et al. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest[J]. Scientific Reports, 2015, 6: 1-8. DOI: 10.1038/srep20652. [31] 胡从从, 郭清华, 贺学礼, 等. 蒙古沙冬青伴生植物AM真菌多样性[J]. 西北农业学报, 2016, 25(6):921-932. DOI: 10.7606/j.issn.1004-1389.2016.06.019. HU C C, GUO Q H, HE X L, et al. Diversity of arbuscular mycorrhiza fungi near to the associated plants of ammopiptanthus mongolicus[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(6):921-932. DOI: 10.7606/j.issn.1004-1389.2016.06.019. [32] 耿晓进, 贺学礼, 贺超. 药用植物金银花根围AM真菌遗传多样性[J].西北农业学报,2014, 23(2):114-119. DOI: 10.7606/j.issn.1004-1389.2014.02.020. GENG X J, HE X L, HE C. AM fungal genetic diversity in the rhizosphere of Lonicera japonica[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(2):114-119. DOI: 10.7606/j.issn.1004-1389.2014.02.020. [33] QIN H, LU K, STRONG P J, et al. Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture[J]. Applied Soil Ecology, 2015, 89: 35-43. DOI: 10.1016/j.apsoil.2015.01.008. [34] LI X, ZHU T, PENG F, et al. Inner mongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization[J]. Environmental Microbiology, 2015, 17(8): 3051. DOI: 10.1111/1462-2920.12931. [35] TISSERANT E, MALBREIL M, KUO A, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 20117-22. DOI: 10.1073/pnas.1313452110. [36] LIN K, LIMPENS E, ZHANG Z, et al. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus[J]. Plos Genetics, 2014, 10(1):e1004078. DOI: 10.1371/journal.pgen.1004078. [37] SMITH J M. Evolution-contemplating life witout sex[J]. Nature, 1986, 324(27): 300-301. DOI: 10.1038/324300a0. [38] VANDENKOORNHUYSE P, LEYVAL C, BONNIN I. High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events[J]. Heredity, 2001, 87(2):243-53. [39] YOUNG J P W. Genome diversity in arbuscular mycorrhizal fungi[J].Current Opinion in Plant Biology, 2015,26: 113-119. DOI: 10.1016/j.pdi.2015.05.006. [40] GIOVANNETTI M, AZZOLINI D, CITEMESI A S. Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi[J]. Applied and Environmental Microbiology, 1999, 65:5571- 5575. [41] GIOVANNETTI M, FORTUNA P, CITEMESI A S, et al. The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks[J]. New Phytologist, 2001, 151:717- 724. DOI: 10.1046/j.0028-646x.2001.00216.x. [42] GIOVANNETTI M, SBRANA C, STRANI P, et al. Genetic diversity of isolates of Glomus mosseae from different geographical areas detected by vegetative compatibility testing and biochemical and molecular analysis[J]. Applied and Environmental Microbiology, 2003, 69:616- 624. DOI: 10.1128/AEM.69.1.616-624. [43] DE LA PROVIDENCIA I E, DE SOUZA F A, FERNANDEZ F, et al. Arbuscular mycorrhizal fungi exhibit distinct pattern of anastomoses formation and hyphal healing mechanism between different phylogenic groups[J]. New Phytologist, 2005, 165:261-271. DOI: 10.1111/j.1469-8137.2004.01236.x. [44] DE LA PROVIDENCIA I E, FERNANDEZ F, DECLERK S. Hyphal healing mechanism in the arbuscular mycorrhizal fungi Scutellospora reticulata and Glomus clarum differs in response to severe physical stress[J]. FEMS microbiology letters, 2007, 268:120-125. DOI: 10.1111/j.1574-6968.2006.00572.x. [45] CARDENAS-FLORES A, DRAYEX, BIVORT C, et al. Impact of multispores in vitro subcultivation of Glomus sp. MUCL 43194(DAOM 197198)on vegetative compatibility and genetic diversity detected by AFLP[J]. Mycorrhiza, 2010, 20:415- 425. DOI: 10.1007/s00572-009-0295-5. [46] CARDENAS-FLORES A, CRANENBROUCK S, DRAYE X, et al. The sterol biosynthesis inhibitor fenhexamid impacts the vegetative compatibility of Glomus clarum[J]. Mycorrhiza,2011, 21:443- 449. DOI: 10.1007/s00572-011-0385-z. [47] PURIN S, MORTON J B. In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi[J]. Mycorrhiza, 2011, 21:505-514. DOI: 10.1007/s00572-010-0356-9. [48] CROLL D, GIOVANNETTI M, KOCH A M, et al. Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices[J]. New phytologist, 2009, 181(4): 924. DOI: 10.1111/j.1469-8137.2008.02726.x. [49] DENOVAIS C B, SBRANA C, JUNIOR O J S, et al. Vegetative compatibility and anastomosis formationwithin and among individual germlings of tropical isolates of arbuscular mycorrhizal fungi(Glomeromycota)[J]. Mycorrhiza, 2013, 23:325-331. DOI: 10.1007/s00572-013-0478-y. [50] ROCA M G, ARLTrlt J, JEFFREE C E. Cell biology of conidial anastomosis tubes in Neurospora crassa[J]. Eukaryotic Cell, 2005, 4(5): 911-919. DOI: 10.1128/EC.4.5.911-919. [51] ROCA M G, READ N D, WHEALS A E. Conidial anastomosis tubes in filamentous fungi[J]. FEMS Microbiology Ecology, 2005, 249(2): 191-198. DOI: 10.1016/j.femsle.2005.06.048. [52] ANGELARD C, COLARD A, NICULITA-HIRZEL H. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription[J].Current Biology, 2010, 20(3): 1216-1221. DOI: 10.1016/j.cub.2010.05.031. [53] KUHN G, HIJRI M, SANDERS I R. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi[J]. Nature, 2001, 414: 745. DOI: 10.1038/414745a. [54] SANDERS I R, CROLL D. Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner[J]. Annual Review of Genetics, 2010, 44(44):271. DOI: 10.1146/annurev-genet-102108-134239. [55] HIJRI M, SANDERS I R. Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei[J]. Nature, 2005, 433(7022): 160-163. DOI: 10.1038/nature03069. [56] RILEY R, CHARRON P, IDUNRM A, et al. Extreme diversification of the mating type- high-mobility group(MATA-HMG)gene family in a plant-associated arbuscular mycorrhizal fungus[J]. New Phytologist, 2014, 201(1): 254. DOI: 10.1111/nph.12462. [57] ROPARS J, TORO K S, NOEL J, et al. Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi[J]. Nature Microbiology, 2016, 1(6): 1-9. DOI: 10.1038/nmicrobiol.2016.33. [58] 刑来君, 李明启. 普通真菌学[M]. 北京: 高等教育出版社, 1999:174-181. XING L J, LI M Q. Putong Zhenjunxue[M]. Beijing: Higher Educational Press, 1999:174-181. [59] RIZWANA R, POWELL W A. Ultraviolet light-induced heterokaryon formation and parasexuality in Cryphonectria parasitica[J]. Experimental Mycology, 1995, 19(19):48-60. [60] MCGUIRE J, DAVIS J M, MACDONALD W, et al. Heterokaryon formation and parasexual recombination between vegetatively incompatible lineages in a population of the chestnut blight fungus, Cryphonectria parasitica[J]. Molecular Ecology, 2005, 14(12):3657- 3669. DOI: 10.1111/j.1365-294X.2005.02693.x. [61] PEDRO M, ANTUNES, ALEXANDER M, et al. Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins[J]. New Phytologist, 2011, 189(2):507- 514. DOI: 10.1111/j.1469-8137.2010.03480.x. [62] GAMPER H, HARTWIG U A. Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure[J]. New Phytologist, 2005, 167(2):531. DOI: 10.1111/j.1469-8137.2005.01440.x. [63] MUNKVOLD L, KJΦLLER R, VESTBERG M, et al. High functional diversity within species of arbuscular mycorrhizal fungi[J]. New Phytologist, 2004, 164(2):357-364. DOI: 10.1111/j.1469-8137.2004.01169.x. [64] SANDERS I R, RODRIGUEZ A. Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems[J]. The International Society for Microbial Ecology Journal, 2016, 10(12): 2780-2786. DOI: 10.1038/ismej.2016.73. [65] JI B M, BENTIVENGA S P, CASPER P P. Evidence for ecological matching of whole AM fungal communities to the local plant-soil environment[J]. Ecology, 2010, 91(10): 4037-4046. DOI: 10.1890/09-1451. [66] XU W, LIU L, HE T, et al. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest[J]. Scientific Reports, 2016, 6:20652. DOI: 10.1038/srep20652. |
[1] | 贾凡. 基于解释结构模型和MICMAC的城市交通拥堵问题分析[J]. 河北大学学报(自然科学版), 2020, 40(4): 344-350. |
[2] | 李烨东,左易灵,张开逊,赵丽莉,贺学礼,王亮. 极旱荒漠灌丛AM真菌与土壤因子相关性[J]. 河北大学学报(自然科学版), 2020, 40(3): 291-300. |
[3] | 李华健,贺学礼. 河北峰峰矿区构树AM真菌物种多样性及生态适应性[J]. 河北大学学报(自然科学版), 2019, 39(3): 278-287. |
[4] | 杨杰,赵新美,闫赛然,李瑞安,张子生. 废弃晶硅太阳能电池中银与硅的静电分选[J]. 河北大学学报(自然科学版), 2019, 39(3): 241-246. |
[5] | 贺学礼, 张亚娟, 赵丽莉, 张娟, 许伟. [J]. 河北大学学报(自然科学版), 2018, 38(3): 268-277. |
[6] | 武小斌,穆淑梅,赵玲玉,康现江,薛建民. 日本沼虾(Macrobrachiumnipponense) 4个野生群体遗传多样性微卫星分析[J]. 河北大学学报(自然科学版), 2017, 37(2): 161-168. |
[7] | 刘芃岩,杨金新,王永慧,张彦娜,田润. [J]. 河北大学学报(自然科学版), 2017, 37(1): 24-30. |
[8] | 齐俊香,杨晓宇,王紫月,杜天舒,李建恒. AM真菌、水分和施磷水平对丹参生长及品质的影响[J]. 河北大学学报(自然科学版), 2016, 36(5): 509-516. |
[9] | 刘春卯,贺学礼,陈严严,王晓乾,姜桥. 蒙古沙冬青AM真菌物种多样性与土壤因子的相关性[J]. 河北大学学报(自然科学版), 2015, 35(3): 278-288. |
[10] | 王晓乾,贺学礼,程春泉,陈严严,姜桥. 蒙古沙冬青AM真菌物种多样性空间异质性[J]. 河北大学学报(自然科学版), 2014, 34(6): 643-649. |
[11] | 董新培,穆淑梅,周楠,康现江,白俊杰. 白洋淀乌鳢线粒体D-Loop区序列遗传多样性分析[J]. 河北大学学报(自然科学版), 2014, 34(2): 201-206. |
[12] | 刘芃岩,田磊,陈艳杰. 氯菊酯在沙土表面的光降解[J]. 河北大学学报(自然科学版), 2014, 34(2): 160-165. |
[13] | 贺学礼,郭辉娟,王银银. 土壤水分和AM真菌对沙打旺根际土壤理化性质的影响[J]. 河北大学学报(自然科学版), 2013, 33(5): 508-513,519. |
[14] | 贺学礼,郭辉娟,王银银,赵丽莉. 内蒙古农牧交错区沙蒿根围AM真菌物种多样性[J]. 河北大学学报(自然科学版), 2012, 32(5): 506-514. |
[15] | 张翔鹤,贺学礼,王雷. 金银花根围AM真菌分布与土壤碳氮关系[J]. 河北大学学报(自然科学版), 2011, 31(5): 522-527. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||