[1] BEN-TAL A, EL GHAOUI L, NEMIROVSKI A. Robust optimization[M]. Princeton: Princeton University Press, 2009. DOI:10.1515/9781400831050. [2] BIRGE J R, LOUVEAUX F. Multistage stochastic programs[M] //Introduction to Stochastic Programming. New York: Springer, 2011: 265-287. DOI:10.1007/978-1-4614-0237-4_6. [3] RUSZCZY SKI A, SHAPIRO A. Stochastic programming models[M] //Handbooks in Operations Research and Management Science. Amsterdam: Elsevier, 2003: 1-64. DOI:10.1016/s0927-0507(03)10001-1. [4] BERTSIMAS D, SIM M. Robust discrete optimization and network flows[J]. Math Program, 2003, 98(1/2/3): 49-71. DOI:10.1007/s10107-003-0396-4. [5] ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning—I[J]. Inf Sci, 1975, 8(3): 199-249. DOI:10.1016/0020-0255(75)90036-5. [6] ZADEH L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets Syst, 1978, 1(1): 3-28. DOI:10.1016/0165-0114(78)90029-5. [7] LIU Y K. Credibility measure theory: An modern methodology of handing subjective uncertainty[M]. Beijing:Science Press, 2018. [8] 刘彦奎,陈艳菊,刘颖.模糊优化方法与应用[M].北京:科学出版社, 2013. [9] VAHDANI B, TAVAKKOLI-MOGHADDAM R, JOLAI F. Reliable design of a logistics network under uncertainty: a fuzzy possibilistic-queuing model[J]. Appl Math Model, 2013, 37(5): 3254-3268. DOI:10.1016/j.apm.2012.07.021. [10] SCARF H. Amin-max solution of an inventory problem. In:Arrow, K.J., Karlin, S., Scarf, H.(eds.). Studies in the mathematical theory of inventory and production[M]. CA: Stanford University Press, 201-209. DOI:10.2307/1910260. [11] DELAGE E, YE Y Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems[J]. Oper Res, 2010, 58(3): 595-612. DOI:10.1287/opre.1090.0741. [12] 刘彦奎,刘颖,白雪洁.鲁棒优化方法与应用[M].北京:科学出版社, 2021. [13] LIU Z Q, LIU Y K. Type-2 fuzzy variables and their arithmetic[J]. Soft Comput, 2010, 14(7): 729-747. DOI:10.1007/s00500-009-0461-x. [14] LIU Y, LIU Y K. The lambda selections of parametric interval-valued fuzzy variables and their numerical characteristics[J]. Fuzzy Optim Decis Mak, 2016, 15(3): 255-279. DOI:10.1007/s10700-015-9227-3. [15] LIU Y, GUO Z. Arithmetic about linear combinations of GPIV fuzzy variables[J]. J Uncertain Syst, 2017, 11(2): 154-160. [16] LIU Y, MA L, LIU Y K. A novel robust fuzzy mean-UPM model for green closed-loop supply chain network design under distribution ambiguity[J]. Appl Math Model, 2021, 92: 99-135. DOI:10.1016/j.apm.2020.10.042. [17] CHEN Y, SHEN S. The cross selections of parametric interval-valued fuzzy variables[J]. Journal of Uncertain Systems, 2015, 9(2): 156-160. [18] GUO Z Z, LIU Y K, LIU Y. Coordinating a three level supply chain under generalized parametric interval-valued distribution of uncertain demand[J]. J Ambient Intell Humaniz Comput, 2017, 8(5): 677-694. DOI:10.1007/s12652-017-0472-x. [19] GUO Z Z, LIU Y K. Modelling single-period inventory problem by distributionally robust fuzzy optimization method[J]. J Intell Fuzzy Syst, 2018, 35(1): 1007-1019. DOI:10.3233/jifs-172128. [20] PEI H L, LI H L, LIU Y K. Modeling pricing decision problem based on interval type-2 fuzzy theory[J]. J Intell Fuzzy Syst, 2021, 40(6): 11257-11272. DOI:10.3233/jifs-202421. [21] LIU N Q, CHEN Y J, LIU Y K. Approximating credibilistic constraints by robust counterparts of uncertain linear inequality[J]. Iranian Journal of Fuzzy Systems, 2021, 1-15. DOI:10.22111/IJFS.2021.6075. [22] GUO Z Z, TIAN S N, LIU Y K. A multiproduct single-period inventory management problem under variable possibility distributions[J]. Math Probl Eng, 2017,2017: 1-14. DOI:10.1155/2017/2159281. [23] BAI X J, LI X, JIA R R, et al. A distributionally robust credibilistic optimization method for the economic-environmental-energy-social sustainability problem[J]. Inf Sci, 2019, 501: 1-18. DOI:10.1016/j.ins.2019.05.031. [24] LIU Y, LIU Y K. Distributionally robust fuzzy project portfolio optimization problem with interactive returns[J]. Appl Soft Comput, 2017, 56: 655-668. DOI:10.1016/j.asoc.2016.09.022. [25] BAI X J, LIU Y K. Robust optimization of supply chain network design in fuzzy decision system[J]. J Intell Manuf, 2016, 27(6): 1131-1149. DOI:10.1007/s10845-014-0939-y. [26] BAI X J, ZHANG F, LIU Y K. Modeling fuzzy data envelopment analysis under robust input and output data[J]. RAIRO-Oper Res, 2018, 52(2): 619-643. DOI:10.1051/ro/2017038. ( |