[1] 姚佳舒,孙子林,袁杨. 2型糖尿病降糖药物治疗进展:更加关注心血管及肾脏结局[J].中国糖尿病杂志, 2021, 29(3): 224-228. DOI: 10.3969/j.issn.1006. [2] 朱月霞,邵仲柏,吴小小,等.海洋天然产物中α-葡萄糖苷酶抑制剂研究进展[J].南京中医药大学学报, 2021, 37(2): 311-320. DOI:10.14148/j.issn.1672-0482.2021.0311. [3] 赖晓红,李敏,周燕,等.基于HPLC-MS/MS快速筛选阿卡波糖及其类似物的菌株[J].质谱学报, 2021, 42(1): 48-55. DOI: 10.7538/zpxb.2019.0175. [4] 赵慧.HPLC-CAD法测定阿卡波糖胶囊含量[J].药物分析杂志, 2020, 40(5): 910-915. DOI:10.16155/j.0254-1793.2020.05.19. [5] LIU Y Y, LI H M, LU L, et al. A Ratiometric electrochemical sensor with integrated probe for the assay of α-glucosidase activity and screening of its inhibitors[J]. Journal of the Electrochemical Society B, 2019, 166(2):133-140. DOI: 10.1149/2.1111902jes. [6] TIMUR S, ÜLKÜ ANIK. Alpha-glucosidase based bismuth film electrode for inhibitor detection[J]. Analytica Chimica Acta, 2007, 598(1):143-146. DOI: 10.1016/j.aca.2007.07.019. [7] SHI M L, CEN Y, XU G H, et al. Ratiometric fluorescence monitoring of α-glucosidase activity based on oxidase-like property of MnO2 nanosheet and its application for inhibitor screening[J]. Analytica Chimica Acta, 2019, 1077:225-231. DOI: 10.1016/j.aca.2019.05.037. [8] ZHANG H, WANG Z, YANG X Q, et al. The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA-CoOOH[J]. Analytica Chimica Acta, 2019, 1080: 170-177. DOI: 10.1016/j.aca.2019.07.014. [9] KONG W H, WU D, XIA L, et al. Carbon dots for fluorescent detection of α-glucosidase activity using enzyme activated inner filter effect and its application to anti-diabetic drug discovery[J]. Analytica Chimica Acta, 2017, 973:91-99. DOI: 10.1016/j.aca.2017.03.050. [10] TANG C, QIAN Z S, QIAN Y J, et al. A fluorometric and real-time assay for α-glucosidase activity through supramolecular self-assembly and its application for inhibitor screening[J]. Sensors and Actuators B, 2017, 245:282-289. DOI: 10.1016/j.snb.2017.01.150. [11] LI G L, KONG W H, ZHAO M, et al. A fluorescence resonance energy transfer(FRET)based “Turn-On” nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening[J]. Biosensors and Bioelectronics, 2016, 79:728-735. DOI: 10.1016/j.bios.2015.12.094. [12] LIU D M, DONG C, MA R T. A colorimetric method for screening α-glucosidase inhibitors from flavonoids using 3, 3', 5, 5'-tetramethylbenzidine as a chromogenic probe[J]. Colloids and Surfaces B, 2021, 197:1-6. DOI: 10.1016/j.colsurfb.2020.111400. [13] CHENG X, HUANG Y, YUAN C, et al. Colorimetric detection of α-glucosidase activity based on the etching of gold nanorods and its application to screen anti-diabetic drugs[J]. Sensors and Actuators B, 2019, 282(3):838-843. DOI: 10.1016/j.snb.2018.11.097. [14] KONG W H, WU D, HU N, et al. Robust hybrid enzyme nanoreactor mediated plasmonic sensing strategy for ultrasensitive screening of anti-diabetic drug[J]. Biosensors and Bioelectronics, 2018, 99: 653-659. DOI: 10.1016/j.bios.2017.08.009. [15] CHEN H X, ZHANG J J, WU H, et al. Sensitive colorimetric assays for α-glucosidase activity and inhibitor screening based on unmodified gold nanoparticles[J]. Analytica Chimica Acta, 2015, 875:92-98. DOI:10.1016/j.aca.2015.02.022. [16] 李献锐,王娜,王贝贝,等. 流动注射-化学发光法测定饲料中环丙氨嗪[J]. 分析科学学报, 2020, 36(3):439-442. DOI:10.13526/j.issn.1006-6144.2020.03.023. ( |