[1] GREEN M A.Third generation photovoltaics:Ultra-high conversion efficiency at low cost[J].Progress in Photovoltaics:Research and Applications,2001,9(2):123-135.DOI:10.1002/pip.360. [2] LUQUE A,MART A.Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J].Physical Review Letters,1997,78(26):5014-5018.DOI:10.1103/physRevLett.78.5014. [3] BROWN A S,GREEN M A.Impurity photovoltaic effect:Fundamental energy conversion efficiency limits [J].Journal Applied Physics,2002,92(3):1329-1336.DOI:10.1063/1.1492016. [4] BROWN A S,GREEN M A.Impurity photovoltaic effect with defect relaxation:Implications for low band gap semiconductors such as silicon [J].Journal Applied Physics,2004,96(5):2603-2609.DOI:10.1063/1.1777394. [5] OLEA J,TOLEDANO-LUQUE M,PASTOR D,et al.Titanium doped silicon layers with very high concentration[J].Journal Applied Physics,2008,104:016105-3.DOI:10.1063/1.2949258. [6] MARTI A,OLEA J,PASTOR D,et al.Lifetime recovery in ultrahigly titanium-doped silicon for the implementation of an intermediate band material [J].Applied Physics Letters,2009,94:042115-3.DOI:10.1063/1.3077202. [7] OLEA J,GONZALEZ-DIAZ G,PASTOR D,et al.Electronic transport properties of Ti-impurity band in Si[J].Journal Physica D:Applied Physics,2009,42:85110-85116.DOI:10.1088/0022-3727/42/8/085110. [8] OLEA J,PASTOR D,MARTIL I,et al.Thermal stability of intermediate band behavior in Ti implanted Si[J].Solar Energy Materials and Solar Cells,2010,94:1907-1911.DOI:10.1016/j-solmat.2010.06.045. [9] OLEA J,DEL PRADO A,PASTOR D,et al.Sub-bandgap absorption in ti implanted Si over the mott limit[J].Journal Applied Physics,2011,109:113541-6.DOI:10.1063/1.3596525. [10] SANCHEZ K,AGUILERA I,PALACIOS P,et al.Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon:Interstitial versus substitutional origin[J].Physical Review B,2009,79:165203-7.DOI:10.1103/PhysRevB.79.165203. [11] VASILIEV I,OGUT S,CHLIKOWSKY J R.First-principles density-functional calculations for optical spectra of clusters and nanocrystals[J].Physical Review B,2002,65:115416 -18.DOI:10.1103/PhysRevB.65.115416. [12] WILLIAMSON A J,GROSSMAN J C,HOOD R Q,et al.Quantum Monte Carlo calculations of nanostructure optical gaps:application to silicon quantum dots [J].Physical Review Letters,2002,89:196803-4.DOI:10.1103/PhysRevLett.89.196803. [13] DEGOLI E,CANTELE G,LUPPI E,et al.Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state[J].Physical Review B,2004,69:155411-10.DOI:10.1103/PhysRevB.69.155411. [14] MA L,ZHAO J J,WANG J G,et al Magnetic properties of transition-metal impurities in silicon quantum dots [J].Physical Review B,2007,75:045312-8.DOI:10.1103/PhysRevB.75.045312. [15] PANSE C,LEITSMANN R,BECHSTEDT F.Magnetic interaction in pairwise Mn-doped Si nanocrystals [J].Physical Review B,2010,82:125205-9.DOI:10.1103/PhysRevB.82.125209. [16] LEITSMANN R,PANSE C,KUWEN F,et al.Ab initio characterization of transition-metal-doped Si nanocrystals[J].Physical Review B,2009,80:104412-10.DOI:10.1103/PhysRevB.80.104412. [17] LEITSMANN R,KUWEN F,RODL C,et al.Influence of strong electron correlation on magnetism in transition-metal doped Si nanocrystals [J].Journal of Chemical Theory Computation,2010,6(2):353-358.DOI:10.1021/ct9003993. |